Algebrability of the set of non-convergent Fourier series
Studia Mathematica, Tome 175 (2006) no. 1, pp. 83-90

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that, given a set $E\subset \mathbb T$ of measure zero, the set of continuous functions whose Fourier series expansion is divergent at any point $t\in E$ is dense-algebrable, i.e. there exists an infinite-dimensional, infinitely generated dense subalgebra of $\mathcal{C}({\mathbb T})$ every non-zero element of which has a Fourier series expansion divergent in $E$.
DOI : 10.4064/sm175-1-5
Keywords: given set subset mathbb measure zero set continuous functions whose fourier series expansion divergent point dense algebrable there exists infinite dimensional infinitely generated dense subalgebra mathcal mathbb every non zero element which has fourier series expansion divergent

Richard M. Aron 1 ; David Pérez-García 2 ; Juan B. Seoane-Sepúlveda 3

1 Department of Mathematics Kent State University Kent, OH 44242, U.S.A.
2 Departamento de Matemática Aplicada E.S.C.E.T. – Universidad Rey Juan Carlos 28933 Móstoles, Madrid, Spain
3 Department of Mathematics Kent State University Kent, OH 44242. U.S.A.
@article{10_4064_sm175_1_5,
     author = {Richard M. Aron and David P\'erez-Garc{\'\i}a and Juan B. Seoane-Sep\'ulveda},
     title = {Algebrability of the set of non-convergent {Fourier} series},
     journal = {Studia Mathematica},
     pages = {83--90},
     publisher = {mathdoc},
     volume = {175},
     number = {1},
     year = {2006},
     doi = {10.4064/sm175-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm175-1-5/}
}
TY  - JOUR
AU  - Richard M. Aron
AU  - David Pérez-García
AU  - Juan B. Seoane-Sepúlveda
TI  - Algebrability of the set of non-convergent Fourier series
JO  - Studia Mathematica
PY  - 2006
SP  - 83
EP  - 90
VL  - 175
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm175-1-5/
DO  - 10.4064/sm175-1-5
LA  - en
ID  - 10_4064_sm175_1_5
ER  - 
%0 Journal Article
%A Richard M. Aron
%A David Pérez-García
%A Juan B. Seoane-Sepúlveda
%T Algebrability of the set of non-convergent Fourier series
%J Studia Mathematica
%D 2006
%P 83-90
%V 175
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm175-1-5/
%R 10.4064/sm175-1-5
%G en
%F 10_4064_sm175_1_5
Richard M. Aron; David Pérez-García; Juan B. Seoane-Sepúlveda. Algebrability of the set of non-convergent Fourier series. Studia Mathematica, Tome 175 (2006) no. 1, pp. 83-90. doi: 10.4064/sm175-1-5

Cité par Sources :