Algebrability of the set of non-convergent Fourier series
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 175 (2006) no. 1, pp. 83-90
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              We show that, given a set $E\subset \mathbb T$ of measure zero, the set
of continuous functions whose Fourier series expansion is
divergent at any point $t\in E$ is dense-algebrable, i.e.
there exists an infinite-dimensional, infinitely generated dense
subalgebra of $\mathcal{C}({\mathbb T})$ every non-zero element of which
has a Fourier series expansion divergent in $E$.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
given set subset mathbb measure zero set continuous functions whose fourier series expansion divergent point dense algebrable there exists infinite dimensional infinitely generated dense subalgebra mathcal mathbb every non zero element which has fourier series expansion divergent
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Richard M. Aron 1 ; David Pérez-García 2 ; Juan B. Seoane-Sepúlveda 3
@article{10_4064_sm175_1_5,
     author = {Richard M. Aron and David P\'erez-Garc{\'\i}a and Juan B. Seoane-Sep\'ulveda},
     title = {Algebrability of the set of non-convergent {Fourier} series},
     journal = {Studia Mathematica},
     pages = {83--90},
     publisher = {mathdoc},
     volume = {175},
     number = {1},
     year = {2006},
     doi = {10.4064/sm175-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm175-1-5/}
}
                      
                      
                    TY - JOUR AU - Richard M. Aron AU - David Pérez-García AU - Juan B. Seoane-Sepúlveda TI - Algebrability of the set of non-convergent Fourier series JO - Studia Mathematica PY - 2006 SP - 83 EP - 90 VL - 175 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm175-1-5/ DO - 10.4064/sm175-1-5 LA - en ID - 10_4064_sm175_1_5 ER -
%0 Journal Article %A Richard M. Aron %A David Pérez-García %A Juan B. Seoane-Sepúlveda %T Algebrability of the set of non-convergent Fourier series %J Studia Mathematica %D 2006 %P 83-90 %V 175 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm175-1-5/ %R 10.4064/sm175-1-5 %G en %F 10_4064_sm175_1_5
Richard M. Aron; David Pérez-García; Juan B. Seoane-Sepúlveda. Algebrability of the set of non-convergent Fourier series. Studia Mathematica, Tome 175 (2006) no. 1, pp. 83-90. doi: 10.4064/sm175-1-5
Cité par Sources :
