On Lindenstrauss–Pełczyński spaces
Studia Mathematica, Tome 174 (2006) no. 3, pp. 213-231
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We consider some stability aspects of
the classical problem of extension of $C(K)$-valued operators. We
introduce the class $\mathscr{LP}$ of Banach spaces of
Lindenstrauss–Pełczyński type as those such that every
operator from a subspace of $c_0$ into them can be extended to
$c_0$. We show that all $\mathscr{LP}$-spaces are of type
$\mathcal L_\infty$ but not conversely. Moreover, $\mathcal
L_\infty$-spaces will be characterized as those spaces $E$ such
that $E$-valued operators from $w^*(l_1,c_0)$-closed subspaces of
$l_1$ extend to $l_1$. Regarding examples we will show that every
separable $\mathcal L_\infty$-space is a quotient of two
$\mathscr{LP}$-spaces; also, $\mathcal L_\infty$-spaces not
containing $c_0$ are $\mathscr{LP}$-spaces; the complemented subspaces
of $C(K)$ and the separably injective spaces are subclasses of the
$\mathscr{LP}$-spaces and we show that the former does not contain
the latter. Regarding stability properties, we prove that
quotients of an $\mathscr{LP}$-space by a separably injective
space and twisted sums of $\mathscr{LP}$-spaces are
$\mathscr{LP}$-spaces.
Mots-clés :
consider stability aspects classical problem extension valued operators introduce class mathscr banach spaces lindenstrauss czy ski type those every operator subspace extended mathscr spaces type mathcal infty conversely moreover mathcal infty spaces characterized those spaces e valued operators * closed subspaces extend regarding examples every separable mathcal infty space quotient mathscr spaces mathcal infty spaces containing mathscr spaces complemented subspaces separably injective spaces subclasses mathscr spaces former does contain latter regarding stability properties prove quotients mathscr space separably injective space twisted sums mathscr spaces mathscr spaces
Affiliations des auteurs :
Jesús M. F. Castillo 1 ; Yolanda Moreno 1 ; Jesús Suárez 1
@article{10_4064_sm174_3_1,
author = {Jes\'us M. F. Castillo and Yolanda Moreno and Jes\'us Su\'arez},
title = {On {Lindenstrauss{\textendash}Pe{\l}czy\'nski} spaces},
journal = {Studia Mathematica},
pages = {213--231},
publisher = {mathdoc},
volume = {174},
number = {3},
year = {2006},
doi = {10.4064/sm174-3-1},
language = {pl},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm174-3-1/}
}
TY - JOUR AU - Jesús M. F. Castillo AU - Yolanda Moreno AU - Jesús Suárez TI - On Lindenstrauss–Pełczyński spaces JO - Studia Mathematica PY - 2006 SP - 213 EP - 231 VL - 174 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm174-3-1/ DO - 10.4064/sm174-3-1 LA - pl ID - 10_4064_sm174_3_1 ER -
Jesús M. F. Castillo; Yolanda Moreno; Jesús Suárez. On Lindenstrauss–Pełczyński spaces. Studia Mathematica, Tome 174 (2006) no. 3, pp. 213-231. doi: 10.4064/sm174-3-1
Cité par Sources :