Product of operators and numerical range preserving maps
Studia Mathematica, Tome 174 (2006) no. 2, pp. 169-182
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let ${\bf V}$ be the $C^*$-algebra $B(H)$ of bounded linear operators acting on
the Hilbert space $H$, or the Jordan algebra $S(H)$ of self-adjoint
operators in $B(H)$.
For a fixed sequence $(i_1, \dots, i_m)$
with $i_1, \dots, i_m \in \{1, \dots, k\}$,
define a product of $A_1, \dots, A_k \in {\bf V}$ by
$A_1* \cdots * A_k = A_{i_1} \cdots A_{i_m}$.
This includes the usual product $A_1* \cdots * A_k = A_1 \cdots A_k$
and the
Jordan triple product $A*B = ABA$ as special cases.
Denote the
numerical range of $A \in {\bf V}$ by $W(A) = \{ (Ax,x): x \in H,\,
(x,x) = 1\}.$
If there is a unitary operator $U$ and a scalar
$\mu$ satisfying $\mu^m = 1$ such that $\phi:{\bf V} \rightarrow {\bf V}$ has the form
$$A \mapsto \mu U^*AU \quad \hbox{or} \quad A \mapsto \mu U^*A^tU,$$
then $\phi$ is surjective and satisfies
$$W(A_1 *\cdots *A_k) =
W(\phi(A_1)* \cdots *\phi(A_k)) \quad\ \hbox{for all } A_1, \dots, A_k
\in {\bf V}.$$
It is shown that the converse is true
under the assumption that one of the terms in
$(i_1, \dots, i_m)$ is different from all other terms.
In the finite-dimensional case, the converse can be proved without
the surjectivity assumption on $\phi$.
An example is given to show that the assumption on $(i_1, \dots, i_m)$
is necessary.
Keywords:
* algebra bounded linear operators acting hilbert space jordan algebra self adjoint operators fixed sequence dots dots dots define product dots * cdots * cdots includes usual product * cdots * cdots jordan triple product a*b aba special cases denote numerical range there unitary operator scalar satisfying phi rightarrow has form mapsto *au quad hbox quad mapsto *a phi surjective satisfies * cdots *a phi * cdots * phi quad hbox dots shown converse under assumption terms dots different other terms finite dimensional converse proved without surjectivity assumption phi example given assumption dots necessary
Affiliations des auteurs :
Chi-Kwong Li 1 ; Nung-Sing Sze 2
@article{10_4064_sm174_2_4,
author = {Chi-Kwong Li and Nung-Sing Sze},
title = {Product of operators and numerical range preserving maps},
journal = {Studia Mathematica},
pages = {169--182},
publisher = {mathdoc},
volume = {174},
number = {2},
year = {2006},
doi = {10.4064/sm174-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm174-2-4/}
}
TY - JOUR AU - Chi-Kwong Li AU - Nung-Sing Sze TI - Product of operators and numerical range preserving maps JO - Studia Mathematica PY - 2006 SP - 169 EP - 182 VL - 174 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm174-2-4/ DO - 10.4064/sm174-2-4 LA - en ID - 10_4064_sm174_2_4 ER -
Chi-Kwong Li; Nung-Sing Sze. Product of operators and numerical range preserving maps. Studia Mathematica, Tome 174 (2006) no. 2, pp. 169-182. doi: 10.4064/sm174-2-4
Cité par Sources :