Product of operators and numerical range preserving maps
Studia Mathematica, Tome 174 (2006) no. 2, pp. 169-182

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let ${\bf V}$ be the $C^*$-algebra $B(H)$ of bounded linear operators acting on the Hilbert space $H$, or the Jordan algebra $S(H)$ of self-adjoint operators in $B(H)$. For a fixed sequence $(i_1, \dots, i_m)$ with $i_1, \dots, i_m \in \{1, \dots, k\}$, define a product of $A_1, \dots, A_k \in {\bf V}$ by $A_1* \cdots * A_k = A_{i_1} \cdots A_{i_m}$. This includes the usual product $A_1* \cdots * A_k = A_1 \cdots A_k$ and the Jordan triple product $A*B = ABA$ as special cases. Denote the numerical range of $A \in {\bf V}$ by $W(A) = \{ (Ax,x): x \in H,\, (x,x) = 1\}.$ If there is a unitary operator $U$ and a scalar $\mu$ satisfying $\mu^m = 1$ such that $\phi:{\bf V} \rightarrow {\bf V}$ has the form $$A \mapsto \mu U^*AU \quad \hbox{or} \quad A \mapsto \mu U^*A^tU,$$ then $\phi$ is surjective and satisfies $$W(A_1 *\cdots *A_k) = W(\phi(A_1)* \cdots *\phi(A_k)) \quad\ \hbox{for all } A_1, \dots, A_k \in {\bf V}.$$ It is shown that the converse is true under the assumption that one of the terms in $(i_1, \dots, i_m)$ is different from all other terms. In the finite-dimensional case, the converse can be proved without the surjectivity assumption on $\phi$. An example is given to show that the assumption on $(i_1, \dots, i_m)$ is necessary.
DOI : 10.4064/sm174-2-4
Keywords: * algebra bounded linear operators acting hilbert space jordan algebra self adjoint operators fixed sequence dots dots dots define product dots * cdots * cdots includes usual product * cdots * cdots jordan triple product a*b aba special cases denote numerical range there unitary operator scalar satisfying phi rightarrow has form mapsto *au quad hbox quad mapsto *a phi surjective satisfies * cdots *a phi * cdots * phi quad hbox dots shown converse under assumption terms dots different other terms finite dimensional converse proved without surjectivity assumption phi example given assumption dots necessary

Chi-Kwong Li 1 ; Nung-Sing Sze 2

1 Department of Mathematics College of William and Mary Williamsburg, VA 23185, U.S.A.
2 Department of Mathematics University of Hong Kong Hong Kong
@article{10_4064_sm174_2_4,
     author = {Chi-Kwong Li and Nung-Sing Sze},
     title = {Product of operators and  numerical range preserving maps},
     journal = {Studia Mathematica},
     pages = {169--182},
     publisher = {mathdoc},
     volume = {174},
     number = {2},
     year = {2006},
     doi = {10.4064/sm174-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm174-2-4/}
}
TY  - JOUR
AU  - Chi-Kwong Li
AU  - Nung-Sing Sze
TI  - Product of operators and  numerical range preserving maps
JO  - Studia Mathematica
PY  - 2006
SP  - 169
EP  - 182
VL  - 174
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm174-2-4/
DO  - 10.4064/sm174-2-4
LA  - en
ID  - 10_4064_sm174_2_4
ER  - 
%0 Journal Article
%A Chi-Kwong Li
%A Nung-Sing Sze
%T Product of operators and  numerical range preserving maps
%J Studia Mathematica
%D 2006
%P 169-182
%V 174
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm174-2-4/
%R 10.4064/sm174-2-4
%G en
%F 10_4064_sm174_2_4
Chi-Kwong Li; Nung-Sing Sze. Product of operators and  numerical range preserving maps. Studia Mathematica, Tome 174 (2006) no. 2, pp. 169-182. doi: 10.4064/sm174-2-4

Cité par Sources :