Optimal domains for kernel operators on $[0,\infty )\times [0,\infty )$
Studia Mathematica, Tome 174 (2006) no. 2, pp. 131-145
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $T$ be a kernel operator with values in a rearrangement invariant Banach function space $X$ on $[0,\infty )$ and defined over simple functions on $[0,\infty )$ of bounded support. We identify the optimal domain for $T$ (still with values in $X$) in terms of interpolation spaces, under appropriate conditions on the kernel and the space $X$. The techniques used are based on the relation between linear operators and vector measures.
Keywords:
kernel operator values rearrangement invariant banach function space infty defined simple functions infty bounded support identify optimal domain still values terms interpolation spaces under appropriate conditions kernel space techniques based relation between linear operators vector measures
Affiliations des auteurs :
Olvido Delgado  1
@article{10_4064_sm174_2_2,
author = {Olvido Delgado},
title = {Optimal domains for kernel operators on $[0,\infty )\times [0,\infty )$},
journal = {Studia Mathematica},
pages = {131--145},
year = {2006},
volume = {174},
number = {2},
doi = {10.4064/sm174-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm174-2-2/}
}
Olvido Delgado. Optimal domains for kernel operators on $[0,\infty )\times [0,\infty )$. Studia Mathematica, Tome 174 (2006) no. 2, pp. 131-145. doi: 10.4064/sm174-2-2
Cité par Sources :