Stability of infinite ranges and kernels
Studia Mathematica, Tome 174 (2006) no. 1, pp. 61-73
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $A(\cdot )$ be a regular function defined on a connected metric space $G$ whose values are mutually commuting essentially Kato operators in a Banach space. Then the spaces $R^\infty (A(z))$ and $\overline {N^\infty (A(z))}$ do not depend on $z\in G$. This generalizes results of B. Aupetit and J. Zemánek.
Keywords:
cdot regular function defined connected metric space whose values mutually commuting essentially kato operators banach space spaces infty overline infty depend generalizes results aupetit zem nek
Affiliations des auteurs :
K.-H. Förster 1 ; V. Müller 2
@article{10_4064_sm174_1_5,
author = {K.-H. F\"orster and V. M\"uller},
title = {Stability of infinite ranges and kernels},
journal = {Studia Mathematica},
pages = {61--73},
publisher = {mathdoc},
volume = {174},
number = {1},
year = {2006},
doi = {10.4064/sm174-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm174-1-5/}
}
K.-H. Förster; V. Müller. Stability of infinite ranges and kernels. Studia Mathematica, Tome 174 (2006) no. 1, pp. 61-73. doi: 10.4064/sm174-1-5
Cité par Sources :