1Department of Mathematics Technical University Berlin Strasse des 17. Juni 135 D-10623 Berlin, Germany 2Mathematical Institute Czech Academy of Sciences Žitná 25 115 67 Praha 1, Czech Republic
Studia Mathematica, Tome 174 (2006) no. 1, pp. 61-73
Let $A(\cdot )$ be a regular function defined on a connected metric space $G$ whose values are mutually commuting essentially Kato operators in a Banach space. Then the spaces $R^\infty (A(z))$ and $\overline {N^\infty (A(z))}$ do not depend on $z\in G$. This generalizes results of B. Aupetit and J. Zemánek.
Keywords:
cdot regular function defined connected metric space whose values mutually commuting essentially kato operators banach space spaces infty overline infty depend generalizes results aupetit zem nek
Affiliations des auteurs :
K.-H. Förster 
1
;
V. Müller 
2
1
Department of Mathematics Technical University Berlin Strasse des 17. Juni 135 D-10623 Berlin, Germany
2
Mathematical Institute Czech Academy of Sciences Žitná 25 115 67 Praha 1, Czech Republic
@article{10_4064_sm174_1_5,
author = {K.-H. F\"orster and V. M\"uller},
title = {Stability of infinite ranges and kernels},
journal = {Studia Mathematica},
pages = {61--73},
year = {2006},
volume = {174},
number = {1},
doi = {10.4064/sm174-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm174-1-5/}
}
TY - JOUR
AU - K.-H. Förster
AU - V. Müller
TI - Stability of infinite ranges and kernels
JO - Studia Mathematica
PY - 2006
SP - 61
EP - 73
VL - 174
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm174-1-5/
DO - 10.4064/sm174-1-5
LA - en
ID - 10_4064_sm174_1_5
ER -
%0 Journal Article
%A K.-H. Förster
%A V. Müller
%T Stability of infinite ranges and kernels
%J Studia Mathematica
%D 2006
%P 61-73
%V 174
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm174-1-5/
%R 10.4064/sm174-1-5
%G en
%F 10_4064_sm174_1_5
K.-H. Förster; V. Müller. Stability of infinite ranges and kernels. Studia Mathematica, Tome 174 (2006) no. 1, pp. 61-73. doi: 10.4064/sm174-1-5