Stability of infinite ranges and kernels
Studia Mathematica, Tome 174 (2006) no. 1, pp. 61-73 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

Let $A(\cdot )$ be a regular function defined on a connected metric space $G$ whose values are mutually commuting essentially Kato operators in a Banach space. Then the spaces $R^\infty (A(z))$ and $\overline {N^\infty (A(z))}$ do not depend on $z\in G$. This generalizes results of B. Aupetit and J. Zemánek.
DOI : 10.4064/sm174-1-5
Keywords: cdot regular function defined connected metric space whose values mutually commuting essentially kato operators banach space spaces infty overline infty depend generalizes results aupetit zem nek

K.-H. Förster  1   ; V. Müller  2

1 Department of Mathematics Technical University Berlin Strasse des 17. Juni 135 D-10623 Berlin, Germany
2 Mathematical Institute Czech Academy of Sciences Žitná 25 115 67 Praha 1, Czech Republic
@article{10_4064_sm174_1_5,
     author = {K.-H. F\"orster and V. M\"uller},
     title = {Stability of infinite ranges and kernels},
     journal = {Studia Mathematica},
     pages = {61--73},
     year = {2006},
     volume = {174},
     number = {1},
     doi = {10.4064/sm174-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm174-1-5/}
}
TY  - JOUR
AU  - K.-H. Förster
AU  - V. Müller
TI  - Stability of infinite ranges and kernels
JO  - Studia Mathematica
PY  - 2006
SP  - 61
EP  - 73
VL  - 174
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm174-1-5/
DO  - 10.4064/sm174-1-5
LA  - en
ID  - 10_4064_sm174_1_5
ER  - 
%0 Journal Article
%A K.-H. Förster
%A V. Müller
%T Stability of infinite ranges and kernels
%J Studia Mathematica
%D 2006
%P 61-73
%V 174
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm174-1-5/
%R 10.4064/sm174-1-5
%G en
%F 10_4064_sm174_1_5
K.-H. Förster; V. Müller. Stability of infinite ranges and kernels. Studia Mathematica, Tome 174 (2006) no. 1, pp. 61-73. doi: 10.4064/sm174-1-5

Cité par Sources :