Quasispectra of solvable Lie algebra homomorphisms into Banach algebras
Studia Mathematica, Tome 174 (2006) no. 1, pp. 13-27
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We propose a noncommutative holomorphic functional calculus on
absolutely convex domains for a Banach algebra homomorphism $\pi$ of a
finite-dimensional solvable Lie algebra $\mathfrak g$ in terms of
quasispectra $\sigma(\pi) $. In particular, we prove that the
joint spectral radius of a compact subset in a solvable operator Lie
subalgebra coincides with the geometric spectral radius with respect to a quasispectrum.
Keywords:
propose noncommutative holomorphic functional calculus absolutely convex domains banach algebra homomorphism finite dimensional solvable lie algebra mathfrak terms quasispectra sigma particular prove joint spectral radius compact subset solvable operator lie subalgebra coincides geometric spectral radius respect quasispectrum
Affiliations des auteurs :
Anar Dosiev 1
@article{10_4064_sm174_1_2,
author = {Anar Dosiev},
title = {Quasispectra of solvable {Lie} algebra homomorphisms into {Banach} algebras},
journal = {Studia Mathematica},
pages = {13--27},
publisher = {mathdoc},
volume = {174},
number = {1},
year = {2006},
doi = {10.4064/sm174-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm174-1-2/}
}
TY - JOUR AU - Anar Dosiev TI - Quasispectra of solvable Lie algebra homomorphisms into Banach algebras JO - Studia Mathematica PY - 2006 SP - 13 EP - 27 VL - 174 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm174-1-2/ DO - 10.4064/sm174-1-2 LA - en ID - 10_4064_sm174_1_2 ER -
Anar Dosiev. Quasispectra of solvable Lie algebra homomorphisms into Banach algebras. Studia Mathematica, Tome 174 (2006) no. 1, pp. 13-27. doi: 10.4064/sm174-1-2
Cité par Sources :