Affine bijections of ${C}({X},I)$
Studia Mathematica, Tome 173 (2006) no. 3, pp. 295-309 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

Let $\mathcal{X}$ be a compact Hausdorff space which satisfies the first axiom of countability, $I=[ 0,1] $ and $\mathcal{C}(\mathcal{X}, I)$ the set of all continuous functions from $\mathcal{X}$ to $I$. If $\varphi:\mathcal{C}(\mathcal{X},I) \rightarrow\mathcal{C}(\mathcal{X},I)$ is a bijective affine map then there exists a homeomorphism $\mu:\mathcal{X\rightarrow X}$ such that for every component $C$ in $\mathcal{X}$ we have either $\varphi (f)(x)=f(\mu(x))$, $f\in \mathcal{C}(\mathcal{X},I)$, $x\in C $, or $\varphi (f)(x)=1-f(\mu(x))$, $f\in \mathcal{C}(\mathcal{X},I)$, $x\in C$.
DOI : 10.4064/sm173-3-4
Mots-clés : mathcal compact hausdorff space which satisfies first axiom countability mathcal mathcal set continuous functions mathcal varphi mathcal mathcal rightarrow mathcal mathcal bijective affine map there exists homeomorphism mathcal rightarrow every component mathcal have either varphi mathcal mathcal varphi f mathcal mathcal

Janko Marovt  1

1 EPF - University of Maribor Razlagova 14 2000 Maribor, Slovenia
@article{10_4064_sm173_3_4,
     author = {Janko Marovt},
     title = {Affine bijections of ${C}({X},I)$},
     journal = {Studia Mathematica},
     pages = {295--309},
     year = {2006},
     volume = {173},
     number = {3},
     doi = {10.4064/sm173-3-4},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm173-3-4/}
}
TY  - JOUR
AU  - Janko Marovt
TI  - Affine bijections of ${C}({X},I)$
JO  - Studia Mathematica
PY  - 2006
SP  - 295
EP  - 309
VL  - 173
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm173-3-4/
DO  - 10.4064/sm173-3-4
LA  - fr
ID  - 10_4064_sm173_3_4
ER  - 
%0 Journal Article
%A Janko Marovt
%T Affine bijections of ${C}({X},I)$
%J Studia Mathematica
%D 2006
%P 295-309
%V 173
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm173-3-4/
%R 10.4064/sm173-3-4
%G fr
%F 10_4064_sm173_3_4
Janko Marovt. Affine bijections of ${C}({X},I)$. Studia Mathematica, Tome 173 (2006) no. 3, pp. 295-309. doi: 10.4064/sm173-3-4

Cité par Sources :