Affine bijections of ${C}({X},I)$
Studia Mathematica, Tome 173 (2006) no. 3, pp. 295-309
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $\mathcal{X}$ be a compact Hausdorff space which satisfies
the first axiom of countability,
$I=[ 0,1] $ and $\mathcal{C}(\mathcal{X},
I)$ the set of all continuous functions from
$\mathcal{X}$ to $I$. If $\varphi:\mathcal{C}(\mathcal{X},I)
\rightarrow\mathcal{C}(\mathcal{X},I)$
is a bijective affine map then there
exists a homeomorphism $\mu:\mathcal{X\rightarrow X}$
such that for every component $C$ in $\mathcal{X}$ we have
either $\varphi (f)(x)=f(\mu(x))$,
$f\in \mathcal{C}(\mathcal{X},I)$, $x\in C $,
or $\varphi (f)(x)=1-f(\mu(x))$,
$f\in \mathcal{C}(\mathcal{X},I)$, $x\in C$.
Mots-clés :
mathcal compact hausdorff space which satisfies first axiom countability mathcal mathcal set continuous functions mathcal varphi mathcal mathcal rightarrow mathcal mathcal bijective affine map there exists homeomorphism mathcal rightarrow every component mathcal have either varphi mathcal mathcal varphi f mathcal mathcal
Affiliations des auteurs :
Janko Marovt  1
@article{10_4064_sm173_3_4,
author = {Janko Marovt},
title = {Affine bijections of ${C}({X},I)$},
journal = {Studia Mathematica},
pages = {295--309},
year = {2006},
volume = {173},
number = {3},
doi = {10.4064/sm173-3-4},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm173-3-4/}
}
Janko Marovt. Affine bijections of ${C}({X},I)$. Studia Mathematica, Tome 173 (2006) no. 3, pp. 295-309. doi: 10.4064/sm173-3-4
Cité par Sources :