a-Weyl's theorem and perturbations
Studia Mathematica, Tome 173 (2006) no. 2, pp. 193-201

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study the stability of a-Weyl's theorem under perturbations by operators in some known classes. We establish in particular that if $T$ is a finite a-isoloid operator, then a-Weyl's theorem is transmitted from $T$ to $T+R$ for every Riesz operator $R$ commuting with $T$.
DOI : 10.4064/sm173-2-6
Keywords: study stability a weyls theorem under perturbations operators known classes establish particular finite a isoloid operator a weyls theorem transmitted every riesz operator commuting

Mourad Oudghiri 1

1 UFR de Mathématiques Université Lille 1 UMR-CNRS 8524 59655 Villeneuve d'Ascq, France
@article{10_4064_sm173_2_6,
     author = {Mourad Oudghiri},
     title = {a-Weyl's theorem and perturbations},
     journal = {Studia Mathematica},
     pages = {193--201},
     publisher = {mathdoc},
     volume = {173},
     number = {2},
     year = {2006},
     doi = {10.4064/sm173-2-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm173-2-6/}
}
TY  - JOUR
AU  - Mourad Oudghiri
TI  - a-Weyl's theorem and perturbations
JO  - Studia Mathematica
PY  - 2006
SP  - 193
EP  - 201
VL  - 173
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm173-2-6/
DO  - 10.4064/sm173-2-6
LA  - en
ID  - 10_4064_sm173_2_6
ER  - 
%0 Journal Article
%A Mourad Oudghiri
%T a-Weyl's theorem and perturbations
%J Studia Mathematica
%D 2006
%P 193-201
%V 173
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm173-2-6/
%R 10.4064/sm173-2-6
%G en
%F 10_4064_sm173_2_6
Mourad Oudghiri. a-Weyl's theorem and perturbations. Studia Mathematica, Tome 173 (2006) no. 2, pp. 193-201. doi: 10.4064/sm173-2-6

Cité par Sources :