Domination by positive Banach–Saks operators
Studia Mathematica, Tome 173 (2006) no. 2, pp. 185-192
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Given a positive Banach–Saks operator $T$ between two Banach lattices $E$ and $F$, we give sufficient conditions on $E$ and $F$ in order to ensure that every positive operator dominated by $T$ is Banach–Saks. A counterexample is also given when these conditions are dropped. Moreover, we deduce a characterization of the Banach–Saks property in Banach lattices in terms of disjointness.
Keywords:
given positive banach saks operator between banach lattices sufficient conditions order ensure every positive operator dominated banach saks counterexample given these conditions dropped moreover deduce characterization banach saks property banach lattices terms disjointness
Affiliations des auteurs :
Julio Flores 1 ; César Ruiz 2
@article{10_4064_sm173_2_5,
author = {Julio Flores and C\'esar Ruiz},
title = {Domination by positive {Banach{\textendash}Saks} operators},
journal = {Studia Mathematica},
pages = {185--192},
publisher = {mathdoc},
volume = {173},
number = {2},
year = {2006},
doi = {10.4064/sm173-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm173-2-5/}
}
Julio Flores; César Ruiz. Domination by positive Banach–Saks operators. Studia Mathematica, Tome 173 (2006) no. 2, pp. 185-192. doi: 10.4064/sm173-2-5
Cité par Sources :