A strong convergence theorem for $H^1(\mathbb{T}^{n})$
Studia Mathematica, Tome 173 (2006) no. 2, pp. 167-184
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $\mathbb{T}^{n} $ denote the usual $n$-torus and let $ \widetilde {S}_u^\delta
(f)$, $u>0$, denote the Bochner–Riesz means of order $\delta >0$ of the
Fourier expansion of $ f\in L^1(\mathbb{T}^{n} )$. The main result of this
paper states that for $f\in H^1(\mathbb{T}^{n} )$ and the critical index
$\alpha:={(n-1)}/2$,
$$
\lim_{R\to \infty} \frac 1 {\log R} \int_0^R \frac { \|\widetilde {S}^\alpha_u(f)
-f\|_{H^1(\mathbb{T}^{n} )}} { u+1}\, du =0.
$$
Keywords:
mathbb denote usual n torus widetilde delta denote bochner riesz means order delta fourier expansion mathbb main result paper states mathbb critical index alpha n lim infty frac log int frac widetilde alpha f mathbb
Affiliations des auteurs :
Feng Dai 1
@article{10_4064_sm173_2_4,
author = {Feng Dai},
title = {A strong convergence theorem for $H^1(\mathbb{T}^{n})$},
journal = {Studia Mathematica},
pages = {167--184},
publisher = {mathdoc},
volume = {173},
number = {2},
year = {2006},
doi = {10.4064/sm173-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm173-2-4/}
}
Feng Dai. A strong convergence theorem for $H^1(\mathbb{T}^{n})$. Studia Mathematica, Tome 173 (2006) no. 2, pp. 167-184. doi: 10.4064/sm173-2-4
Cité par Sources :