A strong convergence theorem for $H^1(\mathbb{T}^{n})$
Studia Mathematica, Tome 173 (2006) no. 2, pp. 167-184

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $\mathbb{T}^{n} $ denote the usual $n$-torus and let $ \widetilde {S}_u^\delta (f)$, $u>0$, denote the Bochner–Riesz means of order $\delta >0$ of the Fourier expansion of $ f\in L^1(\mathbb{T}^{n} )$. The main result of this paper states that for $f\in H^1(\mathbb{T}^{n} )$ and the critical index $\alpha:={(n-1)}/2$, $$ \lim_{R\to \infty} \frac 1 {\log R} \int_0^R \frac { \|\widetilde {S}^\alpha_u(f) -f\|_{H^1(\mathbb{T}^{n} )}} { u+1}\, du =0. $$
DOI : 10.4064/sm173-2-4
Keywords: mathbb denote usual n torus widetilde delta denote bochner riesz means order delta fourier expansion mathbb main result paper states mathbb critical index alpha n lim infty frac log int frac widetilde alpha f mathbb

Feng Dai 1

1 Department of Mathematical and Statistical Sciences CAB 632, University of Alberta Edmonton, Alberta, T6G 2G1, Canada
@article{10_4064_sm173_2_4,
     author = {Feng Dai},
     title = {A strong convergence theorem for $H^1(\mathbb{T}^{n})$},
     journal = {Studia Mathematica},
     pages = {167--184},
     publisher = {mathdoc},
     volume = {173},
     number = {2},
     year = {2006},
     doi = {10.4064/sm173-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm173-2-4/}
}
TY  - JOUR
AU  - Feng Dai
TI  - A strong convergence theorem for $H^1(\mathbb{T}^{n})$
JO  - Studia Mathematica
PY  - 2006
SP  - 167
EP  - 184
VL  - 173
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm173-2-4/
DO  - 10.4064/sm173-2-4
LA  - en
ID  - 10_4064_sm173_2_4
ER  - 
%0 Journal Article
%A Feng Dai
%T A strong convergence theorem for $H^1(\mathbb{T}^{n})$
%J Studia Mathematica
%D 2006
%P 167-184
%V 173
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm173-2-4/
%R 10.4064/sm173-2-4
%G en
%F 10_4064_sm173_2_4
Feng Dai. A strong convergence theorem for $H^1(\mathbb{T}^{n})$. Studia Mathematica, Tome 173 (2006) no. 2, pp. 167-184. doi: 10.4064/sm173-2-4

Cité par Sources :