We consider elementary operators $x\mapsto\sum_{j=1}^na_jxb_j$, acting
on a unital Banach algebra, where $a_j$ and $b_j$ are separately
commuting families of generalized scalar elements. We give an
ascent estimate and a lower bound estimate for such an operator.
Additionally, we give a weak variant of the Fuglede–Putnam theorem for
an elementary operator with strongly commuting
families
$\{a_j\}$ and $\{b_j\}$, i.e. $a_j=a_j'+ia_j''$ ($b_j=b_j'+ib_j''$), where all
$a_j'$ and $a_j''$ ($b_j'$ and $b_j''$) commute. The main tool is
an $L^1$ estimate of the Fourier transform of a
certain class of $C_{\rm cpt}^\infty$ functions on $\mathbb R^{2n}$.
@article{10_4064_sm173_2_3,
author = {Milo\v{s} Arsenovi\'c and Dragoljub Ke\v{c}ki\'c},
title = {Elementary operators on {Banach} algebras and {Fourier} transform},
journal = {Studia Mathematica},
pages = {149--166},
year = {2006},
volume = {173},
number = {2},
doi = {10.4064/sm173-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm173-2-3/}
}
TY - JOUR
AU - Miloš Arsenović
AU - Dragoljub Kečkić
TI - Elementary operators on Banach algebras and Fourier transform
JO - Studia Mathematica
PY - 2006
SP - 149
EP - 166
VL - 173
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm173-2-3/
DO - 10.4064/sm173-2-3
LA - en
ID - 10_4064_sm173_2_3
ER -
%0 Journal Article
%A Miloš Arsenović
%A Dragoljub Kečkić
%T Elementary operators on Banach algebras and Fourier transform
%J Studia Mathematica
%D 2006
%P 149-166
%V 173
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm173-2-3/
%R 10.4064/sm173-2-3
%G en
%F 10_4064_sm173_2_3
Miloš Arsenović; Dragoljub Kečkić. Elementary operators on Banach algebras and Fourier transform. Studia Mathematica, Tome 173 (2006) no. 2, pp. 149-166. doi: 10.4064/sm173-2-3