1Department of Mathematics University of Toronto Toronto, Ontario M5S 2E4, Canada 2Department of Applied Mathematics National Chiao Tung University Hsinchu 300, Taiwan
Studia Mathematica, Tome 173 (2006) no. 1, pp. 73-79
We completely characterize the ranks of $A-B$ and
$A^{1/2}-B^{1/2}$ for operators $A$ and $B$ on a Hilbert space
satisfying $A\geq B\geq 0$. Namely, let $l$ and $m$ be
nonnegative integers or infinity. Then $l=\mathop{\rm rank} (A-B)$ and
$m=\mathop{\rm rank} (A^{1/2}-B^{1/2})$ for some operators $A$ and $B$ with
$A\geq B\geq 0$ on a Hilbert space of dimension $n$ ($1\leq n\leq
\infty$) if and only if $l=m=0$ or $0 l\leq m\leq n$. In
particular, this answers in the negative the
question posed by C. Benhida whether for
positive operators $A$ and $B$ the finiteness of $\mathop{\rm rank} (A-B)$
implies that of $\mathop{\rm rank} (A^{1/2}-B^{1/2})$.For two isometries, we give necessary and sufficient conditions
in order that they be finite-rank perturbations of each other.
One such condition says that, for isometries $A$ and $B$, $A-B$
has finite rank if and only if $A=(I+F)B$ for some unitary
operator $I+F$ with finite-rank $F$. Another condition is in
terms of the parts in the Wold–Lebesgue decompositions of the
nonunitary isometries $A$ and $B$.
Keywords:
completely characterize ranks a b b operators hilbert space satisfying geq geq namely nonnegative integers infinity mathop rank a b mathop rank b operators geq geq hilbert space dimension leq leq infty only leq leq particular answers negative question posed benhida whether positive operators finiteness mathop rank a b implies mathop rank b isometries necessary sufficient conditions order finite rank perturbations each other condition says isometries a b has finite rank only unitary operator finite rank nbsp another condition terms parts wold lebesgue decompositions nonunitary isometries nbsp
Affiliations des auteurs :
Man-Duen Choi 
1
;
Pei Yuan Wu 
2
1
Department of Mathematics University of Toronto Toronto, Ontario M5S 2E4, Canada
2
Department of Applied Mathematics National Chiao Tung University Hsinchu 300, Taiwan
@article{10_4064_sm173_1_5,
author = {Man-Duen Choi and Pei Yuan Wu},
title = {Finite-rank perturbations of
positive operators and isometries},
journal = {Studia Mathematica},
pages = {73--79},
year = {2006},
volume = {173},
number = {1},
doi = {10.4064/sm173-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm173-1-5/}
}
TY - JOUR
AU - Man-Duen Choi
AU - Pei Yuan Wu
TI - Finite-rank perturbations of
positive operators and isometries
JO - Studia Mathematica
PY - 2006
SP - 73
EP - 79
VL - 173
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm173-1-5/
DO - 10.4064/sm173-1-5
LA - en
ID - 10_4064_sm173_1_5
ER -
%0 Journal Article
%A Man-Duen Choi
%A Pei Yuan Wu
%T Finite-rank perturbations of
positive operators and isometries
%J Studia Mathematica
%D 2006
%P 73-79
%V 173
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm173-1-5/
%R 10.4064/sm173-1-5
%G en
%F 10_4064_sm173_1_5
Man-Duen Choi; Pei Yuan Wu. Finite-rank perturbations of
positive operators and isometries. Studia Mathematica, Tome 173 (2006) no. 1, pp. 73-79. doi: 10.4064/sm173-1-5