Finite-rank perturbations of positive operators and isometries
Studia Mathematica, Tome 173 (2006) no. 1, pp. 73-79

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We completely characterize the ranks of $A-B$ and $A^{1/2}-B^{1/2}$ for operators $A$ and $B$ on a Hilbert space satisfying $A\geq B\geq 0$. Namely, let $l$ and $m$ be nonnegative integers or infinity. Then $l=\mathop{\rm rank} (A-B)$ and $m=\mathop{\rm rank} (A^{1/2}-B^{1/2})$ for some operators $A$ and $B$ with $A\geq B\geq 0$ on a Hilbert space of dimension $n$ ($1\leq n\leq \infty$) if and only if $l=m=0$ or $0 l\leq m\leq n$. In particular, this answers in the negative the question posed by C. Benhida whether for positive operators $A$ and $B$ the finiteness of $\mathop{\rm rank} (A-B)$ implies that of $\mathop{\rm rank} (A^{1/2}-B^{1/2})$.For two isometries, we give necessary and sufficient conditions in order that they be finite-rank perturbations of each other. One such condition says that, for isometries $A$ and $B$, $A-B$ has finite rank if and only if $A=(I+F)B$ for some unitary operator $I+F$ with finite-rank $F$. Another condition is in terms of the parts in the Wold–Lebesgue decompositions of the nonunitary isometries $A$ and $B$.
DOI : 10.4064/sm173-1-5
Keywords: completely characterize ranks a b b operators hilbert space satisfying geq geq namely nonnegative integers infinity mathop rank a b mathop rank b operators geq geq hilbert space dimension leq leq infty only leq leq particular answers negative question posed benhida whether positive operators finiteness mathop rank a b implies mathop rank b isometries necessary sufficient conditions order finite rank perturbations each other condition says isometries a b has finite rank only unitary operator finite rank nbsp another condition terms parts wold lebesgue decompositions nonunitary isometries nbsp

Man-Duen Choi 1 ; Pei Yuan Wu 2

1 Department of Mathematics University of Toronto Toronto, Ontario M5S 2E4, Canada
2 Department of Applied Mathematics National Chiao Tung University Hsinchu 300, Taiwan
@article{10_4064_sm173_1_5,
     author = {Man-Duen Choi and Pei Yuan Wu},
     title = {Finite-rank perturbations of
positive operators and isometries},
     journal = {Studia Mathematica},
     pages = {73--79},
     publisher = {mathdoc},
     volume = {173},
     number = {1},
     year = {2006},
     doi = {10.4064/sm173-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm173-1-5/}
}
TY  - JOUR
AU  - Man-Duen Choi
AU  - Pei Yuan Wu
TI  - Finite-rank perturbations of
positive operators and isometries
JO  - Studia Mathematica
PY  - 2006
SP  - 73
EP  - 79
VL  - 173
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm173-1-5/
DO  - 10.4064/sm173-1-5
LA  - en
ID  - 10_4064_sm173_1_5
ER  - 
%0 Journal Article
%A Man-Duen Choi
%A Pei Yuan Wu
%T Finite-rank perturbations of
positive operators and isometries
%J Studia Mathematica
%D 2006
%P 73-79
%V 173
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm173-1-5/
%R 10.4064/sm173-1-5
%G en
%F 10_4064_sm173_1_5
Man-Duen Choi; Pei Yuan Wu. Finite-rank perturbations of
positive operators and isometries. Studia Mathematica, Tome 173 (2006) no. 1, pp. 73-79. doi: 10.4064/sm173-1-5

Cité par Sources :