Finite-rank perturbations of
positive operators and isometries
Studia Mathematica, Tome 173 (2006) no. 1, pp. 73-79
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We completely characterize the ranks of $A-B$ and
$A^{1/2}-B^{1/2}$ for operators $A$ and $B$ on a Hilbert space
satisfying $A\geq B\geq 0$. Namely, let $l$ and $m$ be
nonnegative integers or infinity. Then $l=\mathop{\rm rank} (A-B)$ and
$m=\mathop{\rm rank} (A^{1/2}-B^{1/2})$ for some operators $A$ and $B$ with
$A\geq B\geq 0$ on a Hilbert space of dimension $n$ ($1\leq n\leq
\infty$) if and only if $l=m=0$ or $0 l\leq m\leq n$. In
particular, this answers in the negative the
question posed by C. Benhida whether for
positive operators $A$ and $B$ the finiteness of $\mathop{\rm rank} (A-B)$
implies that of $\mathop{\rm rank} (A^{1/2}-B^{1/2})$.For two isometries, we give necessary and sufficient conditions
in order that they be finite-rank perturbations of each other.
One such condition says that, for isometries $A$ and $B$, $A-B$
has finite rank if and only if $A=(I+F)B$ for some unitary
operator $I+F$ with finite-rank $F$. Another condition is in
terms of the parts in the Wold–Lebesgue decompositions of the
nonunitary isometries $A$ and $B$.
Keywords:
completely characterize ranks a b b operators hilbert space satisfying geq geq namely nonnegative integers infinity mathop rank a b mathop rank b operators geq geq hilbert space dimension leq leq infty only leq leq particular answers negative question posed benhida whether positive operators finiteness mathop rank a b implies mathop rank b isometries necessary sufficient conditions order finite rank perturbations each other condition says isometries a b has finite rank only unitary operator finite rank nbsp another condition terms parts wold lebesgue decompositions nonunitary isometries nbsp
Affiliations des auteurs :
Man-Duen Choi 1 ; Pei Yuan Wu 2
@article{10_4064_sm173_1_5,
author = {Man-Duen Choi and Pei Yuan Wu},
title = {Finite-rank perturbations of
positive operators and isometries},
journal = {Studia Mathematica},
pages = {73--79},
publisher = {mathdoc},
volume = {173},
number = {1},
year = {2006},
doi = {10.4064/sm173-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm173-1-5/}
}
TY - JOUR AU - Man-Duen Choi AU - Pei Yuan Wu TI - Finite-rank perturbations of positive operators and isometries JO - Studia Mathematica PY - 2006 SP - 73 EP - 79 VL - 173 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm173-1-5/ DO - 10.4064/sm173-1-5 LA - en ID - 10_4064_sm173_1_5 ER -
Man-Duen Choi; Pei Yuan Wu. Finite-rank perturbations of positive operators and isometries. Studia Mathematica, Tome 173 (2006) no. 1, pp. 73-79. doi: 10.4064/sm173-1-5
Cité par Sources :