Approximation of the Euclidean ball by polytopes
Studia Mathematica, Tome 173 (2006) no. 1, pp. 1-18

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

There is a constant $c$ such that for every $n\in\mathbb N$, there is an $N_{n}$ so that for every $N\geq N_{n}$ there is a polytope $P_{}$ in $\mathbb R^{n}$ with $N$ vertices and $$ \mathop{\rm vol}\nolimits _{n}(B_{2}^{n}\mathbin{\triangle} P) \leq c \mathop{\rm vol}\nolimits _{n}(B_{2}^{n})N^{-\frac{2}{n-1}} $$ where $B_{2}^{n}$ denotes the Euclidean unit ball of dimension $n$.
DOI : 10.4064/sm173-1-1
Keywords: there constant every mathbb there every geq there polytope mathbb vertices mathop vol nolimits mathbin triangle leq mathop vol nolimits frac n where denotes euclidean unit ball dimension

Monika Ludwig 1 ; Carsten Schütt 2 ; Elisabeth Werner 3

1 Institut für Diskrete Mathematik und Geometrie Technische Universität Wien Wiedner Hauptstraße 8-10/104 1040 Wien, Austria
2 Mathematisches Seminar Christian Albrechts Universität D-24098 Kiel, Germany
3 Department of Mathematics Case Western Reserve University Cleveland, OH 44106, U.S.A. and Université de Lille 1 UFR de Mathématique 59655 Villeneuve d'Ascq, France
@article{10_4064_sm173_1_1,
     author = {Monika Ludwig and Carsten Sch\"utt and Elisabeth Werner},
     title = {Approximation of the {Euclidean} ball by polytopes},
     journal = {Studia Mathematica},
     pages = {1--18},
     publisher = {mathdoc},
     volume = {173},
     number = {1},
     year = {2006},
     doi = {10.4064/sm173-1-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm173-1-1/}
}
TY  - JOUR
AU  - Monika Ludwig
AU  - Carsten Schütt
AU  - Elisabeth Werner
TI  - Approximation of the Euclidean ball by polytopes
JO  - Studia Mathematica
PY  - 2006
SP  - 1
EP  - 18
VL  - 173
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm173-1-1/
DO  - 10.4064/sm173-1-1
LA  - en
ID  - 10_4064_sm173_1_1
ER  - 
%0 Journal Article
%A Monika Ludwig
%A Carsten Schütt
%A Elisabeth Werner
%T Approximation of the Euclidean ball by polytopes
%J Studia Mathematica
%D 2006
%P 1-18
%V 173
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm173-1-1/
%R 10.4064/sm173-1-1
%G en
%F 10_4064_sm173_1_1
Monika Ludwig; Carsten Schütt; Elisabeth Werner. Approximation of the Euclidean ball by polytopes. Studia Mathematica, Tome 173 (2006) no. 1, pp. 1-18. doi: 10.4064/sm173-1-1

Cité par Sources :