Compact perturbations of linear differential
equations in locally convex spaces
Studia Mathematica, Tome 172 (2006) no. 3, pp. 203-227
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Herzog and Lemmert have proven that if $E$ is
a Fréchet space and $T : E \to E$ is a continuous linear
operator, then solvability (in $[0,1]$) of the Cauchy
problem $\dot x=Tx$, $x(0)=x_0$ for any $x_0\in E$ implies
solvability of the problem $\dot
x(t)=Tx(t)+f(t,x(t))$, $x(0)=x_0$ for any $x_0\in E$
and any continuous map $f:[0,1]\times E\to E$ with
relatively compact image. We prove the same theorem for
a large class of locally convex spaces including:
$\bullet$ DFS-spaces, i.e., strong duals of
Fréchet–Schwartz spaces, in particular the spaces of
Schwartz distributions $\S'(\mathbb R^n)$, the spaces of
distributions with compact support ${\cal E}'({\mit\Omega} )$ and the
spaces of germs of holomorphic functions $H(K)$ over an
arbitrary compact set $K\subset\mathbb C^n$;$\bullet$ complete LFS-spaces, i.e., complete inductive
limits of sequences of Fréchet–Schwartz spaces, in
particular the spaces ${\cal D}({\mit\Omega} )$ of test functions;$\bullet$ PLS-spaces, i.e., projective limits of
sequences of DFS-spaces, in particular, the spaces ${\cal D}'({\mit\Omega} )$ of
distibutions and ${\cal A}({\mit\Omega} )$ of real-analytic
functions. Here ${\mit\Omega} $ is an arbitrary open domain in $\mathbb R^n$. We
construct an example showing that the analogous statement
for (smoothly) time-dependent linear operators is invalid
already for Fréchet spaces.
Keywords:
herzog lemmert have proven chet space continuous linear operator solvability cauchy problem dot implies solvability problem dot t continuous map times relatively compact image prove theorem large class locally convex spaces including bullet dfs spaces strong duals chet schwartz spaces particular spaces schwartz distributions mathbb spaces distributions compact support cal mit omega spaces germs holomorphic functions arbitrary compact set subset mathbb bullet complete lfs spaces complete inductive limits sequences chet schwartz spaces particular spaces cal mit omega test functions bullet pls spaces projective limits sequences dfs spaces particular spaces cal mit omega distibutions cal mit omega real analytic functions here mit omega arbitrary domain mathbb construct example showing analogous statement smoothly time dependent linear operators invalid already chet spaces
Affiliations des auteurs :
S. A. Shkarin 1
@article{10_4064_sm172_3_1,
author = {S. A. Shkarin},
title = {Compact perturbations of linear differential
equations in locally convex spaces},
journal = {Studia Mathematica},
pages = {203--227},
publisher = {mathdoc},
volume = {172},
number = {3},
year = {2006},
doi = {10.4064/sm172-3-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm172-3-1/}
}
TY - JOUR AU - S. A. Shkarin TI - Compact perturbations of linear differential equations in locally convex spaces JO - Studia Mathematica PY - 2006 SP - 203 EP - 227 VL - 172 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm172-3-1/ DO - 10.4064/sm172-3-1 LA - en ID - 10_4064_sm172_3_1 ER -
S. A. Shkarin. Compact perturbations of linear differential equations in locally convex spaces. Studia Mathematica, Tome 172 (2006) no. 3, pp. 203-227. doi: 10.4064/sm172-3-1
Cité par Sources :