On the Rockafellar theorem
for ${\mit\Phi}^{\gamma (\cdot ,\cdot )}$-monotone multifunctions
Studia Mathematica, Tome 172 (2006) no. 2, pp. 197-202
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $X$ be an arbitrary set, and $\gamma : X\times X \to {{\mathbb R}}$ any function. Let ${\mit \Phi }$ be a family of real-valued functions defined on $X$. Let ${\mit \Gamma }: X \to 2^{{\mit \Phi }}$ be a cyclic ${\mit \Phi }^{\gamma (\cdot ,\cdot )}$-monotone multifunction with non-empty values. It is shown that the following generalization of the Rockafellar theorem holds. There is a function $f: X \to {{\mathbb R}}$ such that ${\mit \Gamma }$ is contained in the ${\mit \Phi }^{\gamma (\cdot ,\cdot )}$-subdifferential of $f$, ${\mit \Gamma }(x)\subset \partial _{{\mit \Phi }}^{\gamma (\cdot ,\cdot )}f |_{x}$.
Keywords:
arbitrary set gamma times mathbb function mit phi family real valued functions defined mit gamma mit phi cyclic mit phi gamma cdot cdot monotone multifunction non empty values shown following generalization rockafellar theorem holds there function mathbb mit gamma contained mit phi gamma cdot cdot subdifferential mit gamma subset partial mit phi gamma cdot cdot
Affiliations des auteurs :
S. Rolewicz  1
@article{10_4064_sm172_2_6,
author = {S. Rolewicz},
title = {On the {Rockafellar} theorem
for ${\mit\Phi}^{\gamma (\cdot ,\cdot )}$-monotone multifunctions},
journal = {Studia Mathematica},
pages = {197--202},
year = {2006},
volume = {172},
number = {2},
doi = {10.4064/sm172-2-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm172-2-6/}
}
TY - JOUR
AU - S. Rolewicz
TI - On the Rockafellar theorem
for ${\mit\Phi}^{\gamma (\cdot ,\cdot )}$-monotone multifunctions
JO - Studia Mathematica
PY - 2006
SP - 197
EP - 202
VL - 172
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm172-2-6/
DO - 10.4064/sm172-2-6
LA - en
ID - 10_4064_sm172_2_6
ER -
S. Rolewicz. On the Rockafellar theorem
for ${\mit\Phi}^{\gamma (\cdot ,\cdot )}$-monotone multifunctions. Studia Mathematica, Tome 172 (2006) no. 2, pp. 197-202. doi: 10.4064/sm172-2-6
Cité par Sources :