On the Rockafellar theorem
 for ${\mit\Phi}^{\gamma (\cdot ,\cdot )}$-monotone multifunctions
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 172 (2006) no. 2, pp. 197-202
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              Let $X$ be an arbitrary set, and $\gamma : X\times X \to {{\mathbb R}}$ any function. Let ${\mit \Phi }$ be a family of real-valued functions defined on $X$. Let ${\mit \Gamma }: X \to 2^{{\mit \Phi }}$ be a cyclic ${\mit \Phi }^{\gamma (\cdot ,\cdot )}$-monotone multifunction with non-empty values. It is shown that the following generalization of the Rockafellar theorem holds. There is a function $f: X \to {{\mathbb R}}$ such that ${\mit \Gamma }$ is contained in the ${\mit \Phi }^{\gamma (\cdot ,\cdot )}$-subdifferential of $f$, ${\mit \Gamma }(x)\subset \partial _{{\mit \Phi }}^{\gamma (\cdot ,\cdot )}f |_{x}$.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
arbitrary set gamma times mathbb function mit phi family real valued functions defined mit gamma mit phi cyclic mit phi gamma cdot cdot monotone multifunction non empty values shown following generalization rockafellar theorem holds there function mathbb mit gamma contained mit phi gamma cdot cdot subdifferential mit gamma subset partial mit phi gamma cdot cdot
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              S. Rolewicz 1
@article{10_4064_sm172_2_6,
     author = {S. Rolewicz},
     title = {On the {Rockafellar} theorem
 for ${\mit\Phi}^{\gamma (\cdot ,\cdot )}$-monotone multifunctions},
     journal = {Studia Mathematica},
     pages = {197--202},
     publisher = {mathdoc},
     volume = {172},
     number = {2},
     year = {2006},
     doi = {10.4064/sm172-2-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm172-2-6/}
}
                      
                      
                    TY  - JOUR
AU  - S. Rolewicz
TI  - On the Rockafellar theorem
 for ${\mit\Phi}^{\gamma (\cdot ,\cdot )}$-monotone multifunctions
JO  - Studia Mathematica
PY  - 2006
SP  - 197
EP  - 202
VL  - 172
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm172-2-6/
DO  - 10.4064/sm172-2-6
LA  - en
ID  - 10_4064_sm172_2_6
ER  - 
                      
                      
                    S. Rolewicz. On the Rockafellar theorem
 for ${\mit\Phi}^{\gamma (\cdot ,\cdot )}$-monotone multifunctions. Studia Mathematica, Tome 172 (2006) no. 2, pp. 197-202. doi: 10.4064/sm172-2-6
                  
                Cité par Sources :
