Modulation space estimates for multilinear
pseudodifferential operators
Studia Mathematica, Tome 172 (2006) no. 2, pp. 169-180
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that for symbols in the modulation spaces ${\cal M}^{p, q}$,
$p\geq q$, the
associated multilinear pseudodifferential operators are bounded on products of
appropriate modulation spaces. In particular, the symbols we study here are defined
without any reference to smoothness, but rather in terms of their time-frequency behavior.
Keywords:
prove symbols modulation spaces cal geq associated multilinear pseudodifferential operators bounded products appropriate modulation spaces particular symbols study here defined without reference smoothness rather terms their time frequency behavior
Affiliations des auteurs :
Árpád Bényi 1 ; Kasso A. Okoudjou 2
@article{10_4064_sm172_2_4,
author = {\'Arp\'ad B\'enyi and Kasso A. Okoudjou},
title = {Modulation space estimates for multilinear
pseudodifferential operators},
journal = {Studia Mathematica},
pages = {169--180},
publisher = {mathdoc},
volume = {172},
number = {2},
year = {2006},
doi = {10.4064/sm172-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm172-2-4/}
}
TY - JOUR AU - Árpád Bényi AU - Kasso A. Okoudjou TI - Modulation space estimates for multilinear pseudodifferential operators JO - Studia Mathematica PY - 2006 SP - 169 EP - 180 VL - 172 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm172-2-4/ DO - 10.4064/sm172-2-4 LA - en ID - 10_4064_sm172_2_4 ER -
Árpád Bényi; Kasso A. Okoudjou. Modulation space estimates for multilinear pseudodifferential operators. Studia Mathematica, Tome 172 (2006) no. 2, pp. 169-180. doi: 10.4064/sm172-2-4
Cité par Sources :