Vector-valued wavelets and the
Hardy space $H^1({\Bbb R}^n,X)$
Studia Mathematica, Tome 172 (2006) no. 2, pp. 125-147
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We prove an analogue of Y. Meyer's wavelet characterization
of the Hardy space $H^1(\Bbb R^n)$ for the space $H^1(\Bbb R^n,X)$
of $X$-valued functions. Here $X$ is a Banach space with the UMD
property. The proof uses results of T. Figiel on
generalized Calderón–Zygmund operators on Bochner spaces and
some new local estimates.
Keywords:
prove analogue nbsp meyers wavelet characterization hardy space bbb space bbb x valued functions here banach space umd property proof uses results nbsp figiel generalized calder zygmund operators bochner spaces local estimates
Affiliations des auteurs :
Tuomas Hytönen  1
@article{10_4064_sm172_2_2,
author = {Tuomas Hyt\"onen},
title = {Vector-valued wavelets and {the
Hardy} space $H^1({\Bbb R}^n,X)$},
journal = {Studia Mathematica},
pages = {125--147},
year = {2006},
volume = {172},
number = {2},
doi = {10.4064/sm172-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm172-2-2/}
}
Tuomas Hytönen. Vector-valued wavelets and the
Hardy space $H^1({\Bbb R}^n,X)$. Studia Mathematica, Tome 172 (2006) no. 2, pp. 125-147. doi: 10.4064/sm172-2-2
Cité par Sources :