$L^p$ type mapping estimates for
oscillatory integrals in higher dimensions
Studia Mathematica, Tome 172 (2006) no. 2, pp. 101-123
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show in two dimensions that if $Kf=\int_{{\mathbb R}_+^2} k(x,y) f(y)
\,dy$, $k(x,y)={e^{i x^a\cdot y^b}}/{|x-y|^{\eta}},$
$p={4}/{(2+\eta)}$, $a\ge b\ge \bar{1}=(1,1)$,
$v_p(y)=y^{({p}/{p^{\prime}})(\bar{1}-b/a)}$, then
$\|Kf\|_p\le C\|f\|_{p,v_p}$ if $\eta+\alpha_1+\alpha_22,$
$\alpha_j=1-{b_j}/{a_j}$, $j=1,2$. Our methods apply in all
dimensions and also for more general kernels.
Keywords:
dimensions int mathbb cdot x y eta eta bar prime bar b eta alpha alpha alpha methods apply dimensions general kernels
Affiliations des auteurs :
G. Sampson 1
@article{10_4064_sm172_2_1,
author = {G. Sampson},
title = {$L^p$ type mapping estimates for
oscillatory integrals in higher dimensions},
journal = {Studia Mathematica},
pages = {101--123},
publisher = {mathdoc},
volume = {172},
number = {2},
year = {2006},
doi = {10.4064/sm172-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm172-2-1/}
}
TY - JOUR AU - G. Sampson TI - $L^p$ type mapping estimates for oscillatory integrals in higher dimensions JO - Studia Mathematica PY - 2006 SP - 101 EP - 123 VL - 172 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm172-2-1/ DO - 10.4064/sm172-2-1 LA - en ID - 10_4064_sm172_2_1 ER -
G. Sampson. $L^p$ type mapping estimates for oscillatory integrals in higher dimensions. Studia Mathematica, Tome 172 (2006) no. 2, pp. 101-123. doi: 10.4064/sm172-2-1
Cité par Sources :