$L^p$ type mapping estimates for oscillatory integrals in higher dimensions
Studia Mathematica, Tome 172 (2006) no. 2, pp. 101-123

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show in two dimensions that if $Kf=\int_{{\mathbb R}_+^2} k(x,y) f(y) \,dy$, $k(x,y)={e^{i x^a\cdot y^b}}/{|x-y|^{\eta}},$ $p={4}/{(2+\eta)}$, $a\ge b\ge \bar{1}=(1,1)$, $v_p(y)=y^{({p}/{p^{\prime}})(\bar{1}-b/a)}$, then $\|Kf\|_p\le C\|f\|_{p,v_p}$ if $\eta+\alpha_1+\alpha_22,$ $\alpha_j=1-{b_j}/{a_j}$, $j=1,2$. Our methods apply in all dimensions and also for more general kernels.
DOI : 10.4064/sm172-2-1
Keywords: dimensions int mathbb cdot x y eta eta bar prime bar b eta alpha alpha alpha methods apply dimensions general kernels

G. Sampson 1

1 Department of Mathematics Auburn University Auburn, AL 36849-5310, U.S.A.
@article{10_4064_sm172_2_1,
     author = {G. Sampson},
     title = {$L^p$ type mapping estimates for
 oscillatory integrals in higher dimensions},
     journal = {Studia Mathematica},
     pages = {101--123},
     publisher = {mathdoc},
     volume = {172},
     number = {2},
     year = {2006},
     doi = {10.4064/sm172-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm172-2-1/}
}
TY  - JOUR
AU  - G. Sampson
TI  - $L^p$ type mapping estimates for
 oscillatory integrals in higher dimensions
JO  - Studia Mathematica
PY  - 2006
SP  - 101
EP  - 123
VL  - 172
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm172-2-1/
DO  - 10.4064/sm172-2-1
LA  - en
ID  - 10_4064_sm172_2_1
ER  - 
%0 Journal Article
%A G. Sampson
%T $L^p$ type mapping estimates for
 oscillatory integrals in higher dimensions
%J Studia Mathematica
%D 2006
%P 101-123
%V 172
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm172-2-1/
%R 10.4064/sm172-2-1
%G en
%F 10_4064_sm172_2_1
G. Sampson. $L^p$ type mapping estimates for
 oscillatory integrals in higher dimensions. Studia Mathematica, Tome 172 (2006) no. 2, pp. 101-123. doi: 10.4064/sm172-2-1

Cité par Sources :