A remark on extrapolation of rearrangement operators on dyadic $H^s$, $0 s \le 1$
Studia Mathematica, Tome 171 (2005) no. 2, pp. 196-205

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For an injective map $ \tau $ acting on the dyadic subintervals of the unit interval $[0,1)$ we define the rearrangement operator $ T_s $, $0 s 2$, to be the linear extension of the map $$ \frac{h_I}{|I|^{1/s}} \mapsto \frac{h_{\tau(I)}}{|\tau(I)|^{1/s}}, $$ where $h_I$ denotes the $L^\infty$-normalized Haar function supported on the dyadic interval $I. $ We prove the following extrapolation result: If there exists at least one $0 s_0 2$ such that $T_{s_0}$ is bounded on $H^{s_0}$, then for all $0 s 2 $ the operator $T_{s}$ is bounded on $H^{s}.$
DOI : 10.4064/sm171-2-5
Keywords: injective map tau acting dyadic subintervals unit interval define rearrangement operator linear extension map frac mapsto frac tau tau where denotes infty normalized haar function supported dyadic interval prove following extrapolation result there exists least bounded operator bounded nbsp

Stefan Geiss 1 ; Paul F. X. Müller 2 ; Veronika Pillwein 2

1 Department of Mathematics and Statistics P.O. Box 35 (MaD) FIN-40014 University of Jyväskylä, Finland
2 Department of Analysis J. Kepler University A-4040 Linz, Austria
@article{10_4064_sm171_2_5,
     author = {Stefan Geiss and Paul F. X. M\"uller and Veronika Pillwein},
     title = {A remark on extrapolation of rearrangement operators on dyadic
$H^s$, $0< s \le 1$},
     journal = {Studia Mathematica},
     pages = {196--205},
     publisher = {mathdoc},
     volume = {171},
     number = {2},
     year = {2005},
     doi = {10.4064/sm171-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm171-2-5/}
}
TY  - JOUR
AU  - Stefan Geiss
AU  - Paul F. X. Müller
AU  - Veronika Pillwein
TI  - A remark on extrapolation of rearrangement operators on dyadic
$H^s$, $0< s \le 1$
JO  - Studia Mathematica
PY  - 2005
SP  - 196
EP  - 205
VL  - 171
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm171-2-5/
DO  - 10.4064/sm171-2-5
LA  - en
ID  - 10_4064_sm171_2_5
ER  - 
%0 Journal Article
%A Stefan Geiss
%A Paul F. X. Müller
%A Veronika Pillwein
%T A remark on extrapolation of rearrangement operators on dyadic
$H^s$, $0< s \le 1$
%J Studia Mathematica
%D 2005
%P 196-205
%V 171
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm171-2-5/
%R 10.4064/sm171-2-5
%G en
%F 10_4064_sm171_2_5
Stefan Geiss; Paul F. X. Müller; Veronika Pillwein. A remark on extrapolation of rearrangement operators on dyadic
$H^s$, $0< s \le 1$. Studia Mathematica, Tome 171 (2005) no. 2, pp. 196-205. doi: 10.4064/sm171-2-5

Cité par Sources :