A remark on extrapolation of rearrangement operators on dyadic
$H^s$, $0 s \le 1$
Studia Mathematica, Tome 171 (2005) no. 2, pp. 196-205
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For an injective map $ \tau $ acting on the dyadic subintervals of the
unit interval $[0,1)$ we define the rearrangement operator $ T_s $,
$0 s 2$, to be the linear extension of
the map
$$ \frac{h_I}{|I|^{1/s}} \mapsto
\frac{h_{\tau(I)}}{|\tau(I)|^{1/s}}, $$
where $h_I$ denotes the $L^\infty$-normalized Haar function
supported on the dyadic interval $I. $
We prove the following extrapolation result:
If there exists at least one $0 s_0 2$ such that $T_{s_0}$ is bounded
on $H^{s_0}$, then for all $0 s 2 $ the operator $T_{s}$ is bounded
on $H^{s}.$
Keywords:
injective map tau acting dyadic subintervals unit interval define rearrangement operator linear extension map frac mapsto frac tau tau where denotes infty normalized haar function supported dyadic interval prove following extrapolation result there exists least bounded operator bounded nbsp
Affiliations des auteurs :
Stefan Geiss 1 ; Paul F. X. Müller 2 ; Veronika Pillwein 2
@article{10_4064_sm171_2_5,
author = {Stefan Geiss and Paul F. X. M\"uller and Veronika Pillwein},
title = {A remark on extrapolation of rearrangement operators on dyadic
$H^s$, $0< s \le 1$},
journal = {Studia Mathematica},
pages = {196--205},
publisher = {mathdoc},
volume = {171},
number = {2},
year = {2005},
doi = {10.4064/sm171-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm171-2-5/}
}
TY - JOUR AU - Stefan Geiss AU - Paul F. X. Müller AU - Veronika Pillwein TI - A remark on extrapolation of rearrangement operators on dyadic $H^s$, $0< s \le 1$ JO - Studia Mathematica PY - 2005 SP - 196 EP - 205 VL - 171 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm171-2-5/ DO - 10.4064/sm171-2-5 LA - en ID - 10_4064_sm171_2_5 ER -
%0 Journal Article %A Stefan Geiss %A Paul F. X. Müller %A Veronika Pillwein %T A remark on extrapolation of rearrangement operators on dyadic $H^s$, $0< s \le 1$ %J Studia Mathematica %D 2005 %P 196-205 %V 171 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm171-2-5/ %R 10.4064/sm171-2-5 %G en %F 10_4064_sm171_2_5
Stefan Geiss; Paul F. X. Müller; Veronika Pillwein. A remark on extrapolation of rearrangement operators on dyadic $H^s$, $0< s \le 1$. Studia Mathematica, Tome 171 (2005) no. 2, pp. 196-205. doi: 10.4064/sm171-2-5
Cité par Sources :