A functional calculus description of real interpolation spaces for sectorial operators
Studia Mathematica, Tome 171 (2005) no. 2, pp. 177-195

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For a holomorphic function $\psi$ defined on a sector we give a condition implying the identity $$(X,{\scr D}(A^\alpha))_{\theta,p} = \{ x\in X \mid t^{-\theta \mathop{\rm Re} \alpha} \psi(tA) \in {\bf L}^p_{\ast}((0,\infty);X)\} $$ where $A$ is a sectorial operator on a Banach space $X$. This yields all common descriptions of the real interpolation spaces for sectorial operators and allows easy proofs of the moment inequalities and reiteration results for fractional powers.
DOI : 10.4064/sm171-2-4
Keywords: holomorphic function psi defined sector condition implying identity scr alpha theta mid theta mathop alpha psi ast infty where sectorial operator banach space yields common descriptions real interpolation spaces sectorial operators allows easy proofs moment inequalities reiteration results fractional powers

Markus Haase 1

1 Scuola Normale Superiore Piazza dei Cavalieri 7 I-56126 Pisa, Italy
@article{10_4064_sm171_2_4,
     author = {Markus Haase},
     title = {A functional calculus description
of real interpolation spaces for sectorial operators},
     journal = {Studia Mathematica},
     pages = {177--195},
     publisher = {mathdoc},
     volume = {171},
     number = {2},
     year = {2005},
     doi = {10.4064/sm171-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm171-2-4/}
}
TY  - JOUR
AU  - Markus Haase
TI  - A functional calculus description
of real interpolation spaces for sectorial operators
JO  - Studia Mathematica
PY  - 2005
SP  - 177
EP  - 195
VL  - 171
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm171-2-4/
DO  - 10.4064/sm171-2-4
LA  - en
ID  - 10_4064_sm171_2_4
ER  - 
%0 Journal Article
%A Markus Haase
%T A functional calculus description
of real interpolation spaces for sectorial operators
%J Studia Mathematica
%D 2005
%P 177-195
%V 171
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm171-2-4/
%R 10.4064/sm171-2-4
%G en
%F 10_4064_sm171_2_4
Markus Haase. A functional calculus description
of real interpolation spaces for sectorial operators. Studia Mathematica, Tome 171 (2005) no. 2, pp. 177-195. doi: 10.4064/sm171-2-4

Cité par Sources :