A functional calculus description
of real interpolation spaces for sectorial operators
Studia Mathematica, Tome 171 (2005) no. 2, pp. 177-195
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For a holomorphic function $\psi$
defined on a sector we give a condition implying the identity
$$(X,{\scr D}(A^\alpha))_{\theta,p}
= \{ x\in X \mid t^{-\theta \mathop{\rm Re} \alpha}
\psi(tA) \in {\bf L}^p_{\ast}((0,\infty);X)\}
$$
where $A$ is a sectorial operator on a Banach space $X$.
This yields all common descriptions
of the real interpolation spaces for sectorial operators and
allows easy proofs of the moment inequalities and reiteration results
for fractional powers.
Keywords:
holomorphic function psi defined sector condition implying identity scr alpha theta mid theta mathop alpha psi ast infty where sectorial operator banach space yields common descriptions real interpolation spaces sectorial operators allows easy proofs moment inequalities reiteration results fractional powers
Affiliations des auteurs :
Markus Haase 1
@article{10_4064_sm171_2_4,
author = {Markus Haase},
title = {A functional calculus description
of real interpolation spaces for sectorial operators},
journal = {Studia Mathematica},
pages = {177--195},
publisher = {mathdoc},
volume = {171},
number = {2},
year = {2005},
doi = {10.4064/sm171-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm171-2-4/}
}
TY - JOUR AU - Markus Haase TI - A functional calculus description of real interpolation spaces for sectorial operators JO - Studia Mathematica PY - 2005 SP - 177 EP - 195 VL - 171 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm171-2-4/ DO - 10.4064/sm171-2-4 LA - en ID - 10_4064_sm171_2_4 ER -
Markus Haase. A functional calculus description of real interpolation spaces for sectorial operators. Studia Mathematica, Tome 171 (2005) no. 2, pp. 177-195. doi: 10.4064/sm171-2-4
Cité par Sources :