Weighted $L^{\infty}$-estimates for Bergman projections
Studia Mathematica, Tome 171 (2005) no. 1, pp. 67-92
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We consider Bergman projections and some new generalizations of
them on weighted $L^\infty ( {\mathbb D} )$-spaces. A new reproducing formula
is obtained. We show the boundedness of these projections for a
large family of weights $v$ which tend to 0 at the boundary with
a polynomial speed.
These weights may even be nonradial.
For logarithmically decreasing weights bounded projections do not
exist. In this case we instead consider
the projective description problem for
holomorphic inductive limits.
Keywords:
consider bergman projections generalizations weighted infty mathbb spaces reproducing formula obtained boundedness these projections large family weights which tend boundary polynomial speed these weights may even nonradial logarithmically decreasing weights bounded projections exist instead consider projective description problem holomorphic inductive limits
Affiliations des auteurs :
José Bonet 1 ; Miroslav Engliš 2 ; Jari Taskinen 3
@article{10_4064_sm171_1_4,
author = {Jos\'e Bonet and Miroslav Engli\v{s} and Jari Taskinen},
title = {Weighted $L^{\infty}$-estimates for {Bergman} projections},
journal = {Studia Mathematica},
pages = {67--92},
year = {2005},
volume = {171},
number = {1},
doi = {10.4064/sm171-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm171-1-4/}
}
TY - JOUR
AU - José Bonet
AU - Miroslav Engliš
AU - Jari Taskinen
TI - Weighted $L^{\infty}$-estimates for Bergman projections
JO - Studia Mathematica
PY - 2005
SP - 67
EP - 92
VL - 171
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm171-1-4/
DO - 10.4064/sm171-1-4
LA - en
ID - 10_4064_sm171_1_4
ER -
José Bonet; Miroslav Engliš; Jari Taskinen. Weighted $L^{\infty}$-estimates for Bergman projections. Studia Mathematica, Tome 171 (2005) no. 1, pp. 67-92. doi: 10.4064/sm171-1-4
Cité par Sources :