Semigroup actions on tori and stationary measures on projective spaces
Studia Mathematica, Tome 171 (2005) no. 1, pp. 33-66

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let ${\mit\Gamma}$ be a subsemigroup of $G=\mathrm{GL}(d,\mathbb R),$ $d>1.$ We assume that the action of ${\mit\Gamma}$ on ${\mathbb R}^d$ is strongly irreducible and that ${\mit\Gamma}$ contains a proximal and quasi-expanding element. We describe contraction properties of the dynamics of ${\mit\Gamma}$ on ${\mathbb R}^d$ at infinity. This amounts to the consideration of the action of ${\mit\Gamma}$ on some compact homogeneous spaces of $G,$ which are extensions of the projective space ${\mathbb P}^{d-1}.$ In the case where ${\mit\Gamma}$ is a subsemigroup of $\mathrm{GL}(d,{\mathbb R})\cap\mathrm{M}(d,{\mathbb Z})$ and ${\mit\Gamma}$ has the above properties, we deduce that the ${\mit\Gamma}$-orbits on ${\mathbb T}^d={\mathbb R}^d/{\mathbb Z}^d$ are finite or dense.
DOI : 10.4064/sm171-1-3
Keywords: mit gamma subsemigroup mathrm mathbb assume action mit gamma mathbb strongly irreducible mit gamma contains proximal quasi expanding element describe contraction properties dynamics mit gamma mathbb infinity amounts consideration action mit gamma compact homogeneous spaces nbsp which extensions projective space mathbb d where mit gamma subsemigroup mathrm mathbb cap mathrm mathbb mit gamma has above properties deduce mit gamma orbits mathbb mathbb mathbb finite dense

Yves Guivarc'h 1 ; Roman Urban 2

1 IRMAR Université de Rennes 1 Campus de Beaulieu 35042 Rennes Cedex, France
2 Institute of Mathematics Wroc/law University Plac Grunwaldzki 2/4 50-384 Wroc/law, Poland
@article{10_4064_sm171_1_3,
     author = {Yves Guivarc'h and Roman Urban},
     title = {Semigroup actions on
tori and stationary measures on projective spaces},
     journal = {Studia Mathematica},
     pages = {33--66},
     publisher = {mathdoc},
     volume = {171},
     number = {1},
     year = {2005},
     doi = {10.4064/sm171-1-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm171-1-3/}
}
TY  - JOUR
AU  - Yves Guivarc'h
AU  - Roman Urban
TI  - Semigroup actions on
tori and stationary measures on projective spaces
JO  - Studia Mathematica
PY  - 2005
SP  - 33
EP  - 66
VL  - 171
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm171-1-3/
DO  - 10.4064/sm171-1-3
LA  - en
ID  - 10_4064_sm171_1_3
ER  - 
%0 Journal Article
%A Yves Guivarc'h
%A Roman Urban
%T Semigroup actions on
tori and stationary measures on projective spaces
%J Studia Mathematica
%D 2005
%P 33-66
%V 171
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm171-1-3/
%R 10.4064/sm171-1-3
%G en
%F 10_4064_sm171_1_3
Yves Guivarc'h; Roman Urban. Semigroup actions on
tori and stationary measures on projective spaces. Studia Mathematica, Tome 171 (2005) no. 1, pp. 33-66. doi: 10.4064/sm171-1-3

Cité par Sources :