Semigroup actions on
tori and stationary measures on projective spaces
Studia Mathematica, Tome 171 (2005) no. 1, pp. 33-66
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let ${\mit\Gamma}$ be a subsemigroup of $G=\mathrm{GL}(d,\mathbb R),$
$d>1.$ We assume that the action of ${\mit\Gamma}$ on ${\mathbb R}^d$ is strongly
irreducible and that ${\mit\Gamma}$ contains a proximal and quasi-expanding element. We describe contraction properties of the
dynamics of ${\mit\Gamma}$ on ${\mathbb R}^d$ at infinity. This amounts to the
consideration of the action of ${\mit\Gamma}$ on some compact
homogeneous spaces of $G,$ which are extensions of the projective
space ${\mathbb P}^{d-1}.$ In the case where ${\mit\Gamma}$ is a subsemigroup
of $\mathrm{GL}(d,{\mathbb R})\cap\mathrm{M}(d,{\mathbb Z})$ and ${\mit\Gamma}$ has the
above properties, we deduce that the ${\mit\Gamma}$-orbits on
${\mathbb T}^d={\mathbb R}^d/{\mathbb Z}^d$ are finite or dense.
Keywords:
mit gamma subsemigroup mathrm mathbb assume action mit gamma mathbb strongly irreducible mit gamma contains proximal quasi expanding element describe contraction properties dynamics mit gamma mathbb infinity amounts consideration action mit gamma compact homogeneous spaces nbsp which extensions projective space mathbb d where mit gamma subsemigroup mathrm mathbb cap mathrm mathbb mit gamma has above properties deduce mit gamma orbits mathbb mathbb mathbb finite dense
Affiliations des auteurs :
Yves Guivarc'h 1 ; Roman Urban 2
@article{10_4064_sm171_1_3,
author = {Yves Guivarc'h and Roman Urban},
title = {Semigroup actions on
tori and stationary measures on projective spaces},
journal = {Studia Mathematica},
pages = {33--66},
publisher = {mathdoc},
volume = {171},
number = {1},
year = {2005},
doi = {10.4064/sm171-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm171-1-3/}
}
TY - JOUR AU - Yves Guivarc'h AU - Roman Urban TI - Semigroup actions on tori and stationary measures on projective spaces JO - Studia Mathematica PY - 2005 SP - 33 EP - 66 VL - 171 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm171-1-3/ DO - 10.4064/sm171-1-3 LA - en ID - 10_4064_sm171_1_3 ER -
Yves Guivarc'h; Roman Urban. Semigroup actions on tori and stationary measures on projective spaces. Studia Mathematica, Tome 171 (2005) no. 1, pp. 33-66. doi: 10.4064/sm171-1-3
Cité par Sources :