On $C_{0\cdot }$ multi-contractions having a regular dilation
Studia Mathematica, Tome 170 (2005) no. 3, pp. 297-302
Commuting multi-contractions of class $C_{0\cdot }$ and having a regular isometric dilation are studied. We prove that a polydisc contraction of class $C_{0\cdot }$ is the restriction of a backwards multi-shift to an invariant subspace, extending a particular case of a result by R. E. Curto and F.-H. Vasilescu. A new condition on a commuting multi-operator, which is equivalent to the existence of a regular isometric dilation and improves a recent result of A. Olofsson, is obtained as a consequence.
Keywords:
commuting multi contractions class cdot having regular isometric dilation studied prove polydisc contraction class cdot restriction backwards multi shift invariant subspace extending particular result curto h vasilescu condition commuting multi operator which equivalent existence regular isometric dilation improves recent result olofsson obtained consequence
Affiliations des auteurs :
Dan Popovici  1
@article{10_4064_sm170_3_6,
author = {Dan Popovici},
title = {On $C_{0\cdot }$ multi-contractions having a regular dilation},
journal = {Studia Mathematica},
pages = {297--302},
year = {2005},
volume = {170},
number = {3},
doi = {10.4064/sm170-3-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm170-3-6/}
}
Dan Popovici. On $C_{0\cdot }$ multi-contractions having a regular dilation. Studia Mathematica, Tome 170 (2005) no. 3, pp. 297-302. doi: 10.4064/sm170-3-6
Cité par Sources :