Approximate and $L^{p}$ Peano derivatives of nonintegral order
Studia Mathematica, Tome 170 (2005) no. 3, pp. 241-258 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

Let $n$ be a nonnegative integer and let $u\in(n,n+1]$. We say that $f$ is $u$-times Peano bounded in the approximate (resp. $L^{p}$, $1\leq p\leq\infty$) sense at $x\in \mathbb{R}^{m}$ if there are numbers $\{ f_{\alpha}(x)\}$, $\vert \alpha\vert \leq n$, such that $f(x+h)-\sum_{\vert \alpha\vert \leq n}f_{\alpha}( x ) h^{\alpha}/\alpha!$ is $O(h^{u})$ in the approximate (resp. $L^{p}$) sense as $h\rightarrow0$. Suppose $f$ is $u$-times Peano bounded in either the approximate or $L^{p}$ sense at each point of a bounded measurable set $E.$ Then for every $\varepsilon >0$ there is a perfect set $\varPi \subset E$ and a smooth function $g$ such that the Lebesgue measure of $E\setminus\varPi $ is less than $\varepsilon $ and $f=g$ on $\varPi $. The function $g$ may be chosen to be in $C^{u}$ when $u$ is integral, and, in any case, to have for every $j$ of order $\leq n$ a bounded $j$th partial derivative that is Lipschitz of order $u-\vert j\vert $.Pointwise boundedness of order $u$ in the $L^{p}$ sense does not imply pointwise boundedness of the same order in the approximate sense. A classical extension theorem of Calderón and Zygmund is confirmed.
DOI : 10.4064/sm170-3-3
Keywords: nonnegative integer say u times peano bounded approximate resp leq leq infty sense mathbb there numbers alpha vert alpha vert leq sum vert alpha vert leq alpha alpha alpha approximate resp sense rightarrow suppose u times peano bounded either approximate sense each point bounded measurable set every varepsilon there perfect set varpi subset smooth function lebesgue measure setminus varpi varepsilon varpi function may chosen integral have every order leq bounded jth partial derivative lipschitz order u vert vert pointwise boundedness order sense does imply pointwise boundedness order approximate sense nbsp classical extension theorem calder zygmund confirmed

J. Marshall Ash 1 ; Hajrudin Fejzić 2

1 Department of Mathematics DePaul University Chicago, IL 60614-3504, U.S.A.
2 Department of Mathematics California State University San Bernardino, CA 92407, U.S.A.
@article{10_4064_sm170_3_3,
     author = {J. Marshall Ash and Hajrudin Fejzi\'c},
     title = {Approximate and $L^{p}$ {Peano} derivatives
 of nonintegral order},
     journal = {Studia Mathematica},
     pages = {241--258},
     year = {2005},
     volume = {170},
     number = {3},
     doi = {10.4064/sm170-3-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm170-3-3/}
}
TY  - JOUR
AU  - J. Marshall Ash
AU  - Hajrudin Fejzić
TI  - Approximate and $L^{p}$ Peano derivatives
 of nonintegral order
JO  - Studia Mathematica
PY  - 2005
SP  - 241
EP  - 258
VL  - 170
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm170-3-3/
DO  - 10.4064/sm170-3-3
LA  - en
ID  - 10_4064_sm170_3_3
ER  - 
%0 Journal Article
%A J. Marshall Ash
%A Hajrudin Fejzić
%T Approximate and $L^{p}$ Peano derivatives
 of nonintegral order
%J Studia Mathematica
%D 2005
%P 241-258
%V 170
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm170-3-3/
%R 10.4064/sm170-3-3
%G en
%F 10_4064_sm170_3_3
J. Marshall Ash; Hajrudin Fejzić. Approximate and $L^{p}$ Peano derivatives
 of nonintegral order. Studia Mathematica, Tome 170 (2005) no. 3, pp. 241-258. doi: 10.4064/sm170-3-3

Cité par Sources :