The Lizorkin–Freitag formula for several weighted $L_{p}$ spaces and vector-valued interpolation
Studia Mathematica, Tome 170 (2005) no. 3, pp. 227-239 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

A complete description of the real interpolation space $$ L=(L_{p_{0}}(\omega _{0}),\ldots,L_{p_{n}}(\omega _{n}))_{\vec{\theta},q} $$ is given. An interesting feature of the result is that the whole measure space $({\mit\Omega},\mu )$ can be divided into disjoint pieces ${\mit\Omega} _{i}$ ($i\in I$) such that $L$ is an $l_{q}$ sum of the restrictions of $L$ to ${\mit\Omega} _{i}$, and $L$ on each ${\mit\Omega} _{i}$ is a result of interpolation of just two weighted $L_{p}$ spaces. The proof is based on a generalization of some recent results of the first two authors concerning real interpolation of vector-valued spaces.
DOI : 10.4064/sm170-3-2
Keywords: complete description real interpolation space omega ldots omega vec theta given interesting feature result whole measure space mit omega divided disjoint pieces mit omega nbsp sum restrictions mit omega each mit omega result interpolation just weighted spaces proof based generalization recent results first authors concerning real interpolation vector valued spaces

Irina Asekritova 1 ; Natan Krugljak 2 ; Ludmila Nikolova 3

1 Matematiska och Systemtekniska Institutionen Växjö University 351 95 Växjö, Sweden
2 Department of Mathematics Luleå University of Technology SE 972 33 Luleå, Sweden
3 University of Sofia boul. James Boucher 5 Sofia 1164, Bulgaria
@article{10_4064_sm170_3_2,
     author = {Irina Asekritova and Natan Krugljak and Ludmila Nikolova},
     title = {The {Lizorkin{\textendash}Freitag} formula for
several weighted $L_{p}$ spaces
and
vector-valued interpolation},
     journal = {Studia Mathematica},
     pages = {227--239},
     year = {2005},
     volume = {170},
     number = {3},
     doi = {10.4064/sm170-3-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm170-3-2/}
}
TY  - JOUR
AU  - Irina Asekritova
AU  - Natan Krugljak
AU  - Ludmila Nikolova
TI  - The Lizorkin–Freitag formula for
several weighted $L_{p}$ spaces
and
vector-valued interpolation
JO  - Studia Mathematica
PY  - 2005
SP  - 227
EP  - 239
VL  - 170
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm170-3-2/
DO  - 10.4064/sm170-3-2
LA  - en
ID  - 10_4064_sm170_3_2
ER  - 
%0 Journal Article
%A Irina Asekritova
%A Natan Krugljak
%A Ludmila Nikolova
%T The Lizorkin–Freitag formula for
several weighted $L_{p}$ spaces
and
vector-valued interpolation
%J Studia Mathematica
%D 2005
%P 227-239
%V 170
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm170-3-2/
%R 10.4064/sm170-3-2
%G en
%F 10_4064_sm170_3_2
Irina Asekritova; Natan Krugljak; Ludmila Nikolova. The Lizorkin–Freitag formula for
several weighted $L_{p}$ spaces
and
vector-valued interpolation. Studia Mathematica, Tome 170 (2005) no. 3, pp. 227-239. doi: 10.4064/sm170-3-2

Cité par Sources :