Subharmonicity in von Neumann algebras
Studia Mathematica, Tome 170 (2005) no. 3, pp. 219-226 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

Let ${\cal M}$ be a von Neumann algebra with unit $1_{\cal M}$. Let $\tau$ be a faithful, normal, semifinite trace on ${\cal M}$. Given $x\in{\cal M}$, denote by $\mu_t(x)_{t\ge0}$ the generalized $s$-numbers of $x$, defined by $$ \mu_t(x)=\inf\{\|xe\|: e \hbox{ is a projection in ${\cal M}$ with }\tau(1_{\cal M}-e)\le t\} \quad (t\ge0). $$ We prove that, if $D$ is a complex domain and $f:D\to{\cal M}$ is a holomorphic function, then, for each $t\ge0$, $\lambda\mapsto\int_0^t\log\mu_s(f(\lambda))\,ds$ is a subharmonic function on $D$. This generalizes earlier subharmonicity results of White and Aupetit on the singular values of matrices.
DOI : 10.4064/sm170-3-1
Keywords: cal von neumann algebra unit cal tau faithful normal semifinite trace cal given cal denote generalized s numbers defined inf hbox projection cal tau cal e quad prove complex domain cal holomorphic function each lambda mapsto int log lambda subharmonic function generalizes earlier subharmonicity results white aupetit singular values matrices

Thomas Ransford 1 ; Michel Valley 2

1 Département de mathématiques et de statistique Université Laval Québec (QC), Canada G1K 7P4
2 Département de mathématiques et de statistique Université Laval Québec (QC) Canada G1K 7P4
@article{10_4064_sm170_3_1,
     author = {Thomas Ransford and Michel Valley},
     title = {Subharmonicity in von {Neumann} algebras},
     journal = {Studia Mathematica},
     pages = {219--226},
     year = {2005},
     volume = {170},
     number = {3},
     doi = {10.4064/sm170-3-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm170-3-1/}
}
TY  - JOUR
AU  - Thomas Ransford
AU  - Michel Valley
TI  - Subharmonicity in von Neumann algebras
JO  - Studia Mathematica
PY  - 2005
SP  - 219
EP  - 226
VL  - 170
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm170-3-1/
DO  - 10.4064/sm170-3-1
LA  - en
ID  - 10_4064_sm170_3_1
ER  - 
%0 Journal Article
%A Thomas Ransford
%A Michel Valley
%T Subharmonicity in von Neumann algebras
%J Studia Mathematica
%D 2005
%P 219-226
%V 170
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm170-3-1/
%R 10.4064/sm170-3-1
%G en
%F 10_4064_sm170_3_1
Thomas Ransford; Michel Valley. Subharmonicity in von Neumann algebras. Studia Mathematica, Tome 170 (2005) no. 3, pp. 219-226. doi: 10.4064/sm170-3-1

Cité par Sources :