Subharmonicity in von Neumann algebras
Studia Mathematica, Tome 170 (2005) no. 3, pp. 219-226
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let ${\cal M}$ be a von Neumann algebra with unit $1_{\cal M}$.
Let $\tau$ be a faithful, normal, semifinite trace on ${\cal M}$.
Given $x\in{\cal M}$, denote by $\mu_t(x)_{t\ge0}$
the generalized $s$-numbers of $x$,
defined by
$$
\mu_t(x)=\inf\{\|xe\|: e \hbox{ is a projection in ${\cal M}$
with }\tau(1_{\cal M}-e)\le t\} \quad (t\ge0).
$$
We prove that,
if $D$ is a complex domain and $f:D\to{\cal M}$ is a
holomorphic function, then,
for each $t\ge0$,
$\lambda\mapsto\int_0^t\log\mu_s(f(\lambda))\,ds$
is a subharmonic function on $D$.
This generalizes earlier subharmonicity results of White and Aupetit
on the singular values of matrices.
Keywords:
cal von neumann algebra unit cal tau faithful normal semifinite trace cal given cal denote generalized s numbers defined inf hbox projection cal tau cal e quad prove complex domain cal holomorphic function each lambda mapsto int log lambda subharmonic function generalizes earlier subharmonicity results white aupetit singular values matrices
Affiliations des auteurs :
Thomas Ransford 1 ; Michel Valley 2
@article{10_4064_sm170_3_1,
author = {Thomas Ransford and Michel Valley},
title = {Subharmonicity in von {Neumann} algebras},
journal = {Studia Mathematica},
pages = {219--226},
year = {2005},
volume = {170},
number = {3},
doi = {10.4064/sm170-3-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm170-3-1/}
}
Thomas Ransford; Michel Valley. Subharmonicity in von Neumann algebras. Studia Mathematica, Tome 170 (2005) no. 3, pp. 219-226. doi: 10.4064/sm170-3-1
Cité par Sources :