1Département de mathématiques et de statistique Université Laval Québec (QC), Canada G1K 7P4 2Département de mathématiques et de statistique Université Laval Québec (QC) Canada G1K 7P4
Studia Mathematica, Tome 170 (2005) no. 3, pp. 219-226
Let ${\cal M}$ be a von Neumann algebra with unit $1_{\cal M}$.
Let $\tau$ be a faithful, normal, semifinite trace on ${\cal M}$.
Given $x\in{\cal M}$, denote by $\mu_t(x)_{t\ge0}$
the generalized $s$-numbers of $x$,
defined by
$$
\mu_t(x)=\inf\{\|xe\|: e \hbox{ is a projection in ${\cal M}$
with }\tau(1_{\cal M}-e)\le t\} \quad (t\ge0).
$$
We prove that,
if $D$ is a complex domain and $f:D\to{\cal M}$ is a
holomorphic function, then,
for each $t\ge0$,
$\lambda\mapsto\int_0^t\log\mu_s(f(\lambda))\,ds$
is a subharmonic function on $D$.
This generalizes earlier subharmonicity results of White and Aupetit
on the singular values of matrices.
Keywords:
cal von neumann algebra unit cal tau faithful normal semifinite trace cal given cal denote generalized s numbers defined inf hbox projection cal tau cal e quad prove complex domain cal holomorphic function each lambda mapsto int log lambda subharmonic function generalizes earlier subharmonicity results white aupetit singular values matrices
Affiliations des auteurs :
Thomas Ransford 
1
;
Michel Valley 
2
1
Département de mathématiques et de statistique Université Laval Québec (QC), Canada G1K 7P4
2
Département de mathématiques et de statistique Université Laval Québec (QC) Canada G1K 7P4
@article{10_4064_sm170_3_1,
author = {Thomas Ransford and Michel Valley},
title = {Subharmonicity in von {Neumann} algebras},
journal = {Studia Mathematica},
pages = {219--226},
year = {2005},
volume = {170},
number = {3},
doi = {10.4064/sm170-3-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm170-3-1/}
}
TY - JOUR
AU - Thomas Ransford
AU - Michel Valley
TI - Subharmonicity in von Neumann algebras
JO - Studia Mathematica
PY - 2005
SP - 219
EP - 226
VL - 170
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm170-3-1/
DO - 10.4064/sm170-3-1
LA - en
ID - 10_4064_sm170_3_1
ER -
%0 Journal Article
%A Thomas Ransford
%A Michel Valley
%T Subharmonicity in von Neumann algebras
%J Studia Mathematica
%D 2005
%P 219-226
%V 170
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm170-3-1/
%R 10.4064/sm170-3-1
%G en
%F 10_4064_sm170_3_1
Thomas Ransford; Michel Valley. Subharmonicity in von Neumann algebras. Studia Mathematica, Tome 170 (2005) no. 3, pp. 219-226. doi: 10.4064/sm170-3-1