1Division of Mathematical Sciences National Science Foundation 4201 Wilson Blvd Arlington, VA 22230, U.S.A. 2School of Mathematics University of East Anglia Norwich, NR4s 7TJ, UK 3Theoretische Informatik und Logik Universität Bern Neubrückstrasse 10 3012 Bern, Switzerland 4Department of Math. Analysis Faculty of Mathematics and Physics Charles University Sokolovská 83 186 75 Praha 8, Czech Republic 5Institute of Mathematics Cracow University of Technology Warszawska 24 31-155 Kraków, Poland
Studia Mathematica, Tome 170 (2005) no. 2, pp. 147-171
We investigate various kinds of bases in infinite-dimensional Banach spaces. In particular, we consider the complexity of Hamel bases in separable and non-separable Banach spaces and show that in a separable Banach space a Hamel basis cannot be analytic, whereas there are non-separable Hilbert spaces which have a discrete and closed Hamel basis. Further we investigate the existence of certain complete minimal systems in $\ell _\infty $ as well as in separable Banach spaces.
Keywords:
investigate various kinds bases infinite dimensional banach spaces particular consider complexity hamel bases separable non separable banach spaces separable banach space hamel basis cannot analytic whereas there non separable hilbert spaces which have discrete closed hamel basis further investigate existence certain complete minimal systems ell infty separable banach spaces
1
Division of Mathematical Sciences National Science Foundation 4201 Wilson Blvd Arlington, VA 22230, U.S.A.
2
School of Mathematics University of East Anglia Norwich, NR4s 7TJ, UK
3
Theoretische Informatik und Logik Universität Bern Neubrückstrasse 10 3012 Bern, Switzerland
4
Department of Math. Analysis Faculty of Mathematics and Physics Charles University Sokolovská 83 186 75 Praha 8, Czech Republic
5
Institute of Mathematics Cracow University of Technology Warszawska 24 31-155 Kraków, Poland
@article{10_4064_sm170_2_3,
author = {Tomek Bartoszy\'nski and Mirna D\v{z}amonja and Lorenz Halbeisen and Eva Murtinov\'a and Anatolij Plichko},
title = {On bases in {Banach} spaces},
journal = {Studia Mathematica},
pages = {147--171},
year = {2005},
volume = {170},
number = {2},
doi = {10.4064/sm170-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm170-2-3/}
}
TY - JOUR
AU - Tomek Bartoszyński
AU - Mirna Džamonja
AU - Lorenz Halbeisen
AU - Eva Murtinová
AU - Anatolij Plichko
TI - On bases in Banach spaces
JO - Studia Mathematica
PY - 2005
SP - 147
EP - 171
VL - 170
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm170-2-3/
DO - 10.4064/sm170-2-3
LA - en
ID - 10_4064_sm170_2_3
ER -
%0 Journal Article
%A Tomek Bartoszyński
%A Mirna Džamonja
%A Lorenz Halbeisen
%A Eva Murtinová
%A Anatolij Plichko
%T On bases in Banach spaces
%J Studia Mathematica
%D 2005
%P 147-171
%V 170
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm170-2-3/
%R 10.4064/sm170-2-3
%G en
%F 10_4064_sm170_2_3
Tomek Bartoszyński; Mirna Džamonja; Lorenz Halbeisen; Eva Murtinová; Anatolij Plichko. On bases in Banach spaces. Studia Mathematica, Tome 170 (2005) no. 2, pp. 147-171. doi: 10.4064/sm170-2-3