On bases in Banach spaces
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 170 (2005) no. 2, pp. 147-171
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              We investigate various kinds of bases in infinite-dimensional Banach spaces. In particular, we consider the complexity of Hamel bases in separable and non-separable Banach spaces and show that in a separable Banach space a Hamel basis cannot be analytic, whereas there are non-separable Hilbert spaces which have a discrete and closed Hamel basis. Further we investigate the existence of certain complete minimal systems in $\ell _\infty $ as well as in separable Banach spaces.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
investigate various kinds bases infinite dimensional banach spaces particular consider complexity hamel bases separable non separable banach spaces separable banach space hamel basis cannot analytic whereas there non separable hilbert spaces which have discrete closed hamel basis further investigate existence certain complete minimal systems ell infty separable banach spaces
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Tomek Bartoszyński 1 ; Mirna Džamonja 2 ; Lorenz Halbeisen 3 ; Eva Murtinová 4 ; Anatolij Plichko 5
@article{10_4064_sm170_2_3,
     author = {Tomek Bartoszy\'nski and Mirna D\v{z}amonja and Lorenz Halbeisen and Eva Murtinov\'a and Anatolij Plichko},
     title = {On bases in {Banach} spaces},
     journal = {Studia Mathematica},
     pages = {147--171},
     publisher = {mathdoc},
     volume = {170},
     number = {2},
     year = {2005},
     doi = {10.4064/sm170-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm170-2-3/}
}
                      
                      
                    TY - JOUR AU - Tomek Bartoszyński AU - Mirna Džamonja AU - Lorenz Halbeisen AU - Eva Murtinová AU - Anatolij Plichko TI - On bases in Banach spaces JO - Studia Mathematica PY - 2005 SP - 147 EP - 171 VL - 170 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm170-2-3/ DO - 10.4064/sm170-2-3 LA - en ID - 10_4064_sm170_2_3 ER -
%0 Journal Article %A Tomek Bartoszyński %A Mirna Džamonja %A Lorenz Halbeisen %A Eva Murtinová %A Anatolij Plichko %T On bases in Banach spaces %J Studia Mathematica %D 2005 %P 147-171 %V 170 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm170-2-3/ %R 10.4064/sm170-2-3 %G en %F 10_4064_sm170_2_3
Tomek Bartoszyński; Mirna Džamonja; Lorenz Halbeisen; Eva Murtinová; Anatolij Plichko. On bases in Banach spaces. Studia Mathematica, Tome 170 (2005) no. 2, pp. 147-171. doi: 10.4064/sm170-2-3
Cité par Sources :
