We look at normed spaces of differentiable functions on compact plane sets, including the spaces of infinitely differentiable functions considered by Dales and Davie in [7]. For many compact plane sets the classical definitions give rise to incomplete spaces. We introduce an alternative definition of differentiability which allows us to describe the completions of these spaces. We also consider some associated problems of polynomial and rational approximation.
@article{10_4064_sm170_1_5,
author = {William J. Bland and Joel F. Feinstein},
title = {Completions of normed algebras of differentiable functions},
journal = {Studia Mathematica},
pages = {89--111},
year = {2005},
volume = {170},
number = {1},
doi = {10.4064/sm170-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm170-1-5/}
}
TY - JOUR
AU - William J. Bland
AU - Joel F. Feinstein
TI - Completions of normed algebras of differentiable functions
JO - Studia Mathematica
PY - 2005
SP - 89
EP - 111
VL - 170
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm170-1-5/
DO - 10.4064/sm170-1-5
LA - en
ID - 10_4064_sm170_1_5
ER -
%0 Journal Article
%A William J. Bland
%A Joel F. Feinstein
%T Completions of normed algebras of differentiable functions
%J Studia Mathematica
%D 2005
%P 89-111
%V 170
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm170-1-5/
%R 10.4064/sm170-1-5
%G en
%F 10_4064_sm170_1_5
William J. Bland; Joel F. Feinstein. Completions of normed algebras of differentiable functions. Studia Mathematica, Tome 170 (2005) no. 1, pp. 89-111. doi: 10.4064/sm170-1-5