Semi-embeddings and weakly sequential completeness of the projective tensor product
Studia Mathematica, Tome 169 (2005) no. 3, pp. 287-294

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that if $\{P_k\}$ is a boundedly complete, unconditional Schauder decomposition of a Banach space $X$, then $X$ is weakly sequentially complete whenever $P_kX$ is weakly sequentially complete for each $k \in \mathbb N$. Then through semi-embeddings, we give a new proof of Lewis's result: if one of Banach spaces $X$ and $Y$ has an unconditional basis, then $X\mathbin{\widehat{\otimes}}Y$, the projective tensor product of $X$ and $Y$, is weakly sequentially complete whenever both $X$ and $Y$ are weakly sequentially complete.
DOI : 10.4064/sm169-3-4
Keywords: boundedly complete unconditional schauder decomposition banach space weakly sequentially complete whenever weakly sequentially complete each mathbb through semi embeddings proof lewiss result banach spaces has unconditional basis mathbin widehat otimes projective tensor product weakly sequentially complete whenever weakly sequentially complete

Qingying Bu 1

1 Department of Mathematics University of Mississippi University, MS 38677, U.S.A.
@article{10_4064_sm169_3_4,
     author = {Qingying Bu},
     title = {Semi-embeddings and weakly sequential
 completeness of the projective tensor product},
     journal = {Studia Mathematica},
     pages = {287--294},
     publisher = {mathdoc},
     volume = {169},
     number = {3},
     year = {2005},
     doi = {10.4064/sm169-3-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm169-3-4/}
}
TY  - JOUR
AU  - Qingying Bu
TI  - Semi-embeddings and weakly sequential
 completeness of the projective tensor product
JO  - Studia Mathematica
PY  - 2005
SP  - 287
EP  - 294
VL  - 169
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm169-3-4/
DO  - 10.4064/sm169-3-4
LA  - en
ID  - 10_4064_sm169_3_4
ER  - 
%0 Journal Article
%A Qingying Bu
%T Semi-embeddings and weakly sequential
 completeness of the projective tensor product
%J Studia Mathematica
%D 2005
%P 287-294
%V 169
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm169-3-4/
%R 10.4064/sm169-3-4
%G en
%F 10_4064_sm169_3_4
Qingying Bu. Semi-embeddings and weakly sequential
 completeness of the projective tensor product. Studia Mathematica, Tome 169 (2005) no. 3, pp. 287-294. doi: 10.4064/sm169-3-4

Cité par Sources :