Long time existence of regular solutions to Navier–Stokes equations in cylindrical domains under boundary slip conditions
Studia Mathematica, Tome 169 (2005) no. 3, pp. 243-285 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

Long time existence of solutions to the Navier–Stokes equations in cylindrical domains under boundary slip conditions is proved. Moreover, the existence of solutions with no restrictions on the magnitude of the initial velocity and the external force is shown. However, we have to assume that the quantity $$ I=\sum_{i=1}^2(\|\partial_{x_3}^iv(0)\|_{L_2({\mit\Omega})}+ \|\partial_{x_3}^if\|_{L_2({\mit\Omega}\times(0,T))}) $$ is sufficiently small, where $x_3$ is the coordinate along the axis parallel to the cylinder. The time of existence is inversely proportional to $I$. Existence of solutions is proved by the Leray–Schauder fixed point theorem applied to problems for $h^{(i)}=\partial_{x_3}^iv$, $q^{(i)}=\partial_{x_3}^ip$, $i=1,2$, which follow from the Navier–Stokes equations and corresponding boundary conditions. Existence is proved in Sobolev–Slobodetskiĭ spaces: $h^{(i)}\in W_\delta^{2+\beta,1+\beta/2}({\mit\Omega}\times(0,T))$, where $i=1,2$, $\beta\in(0,1)$, $\delta\in(1,2)$, $5/\delta3+\beta$, $3/\delta2+\beta$.
DOI : 10.4064/sm169-3-3
Keywords: long time existence solutions navier stokes equations cylindrical domains under boundary slip conditions proved moreover existence solutions restrictions magnitude initial velocity external force shown however have assume quantity sum partial mit omega partial mit omega times sufficiently small where coordinate along axis parallel cylinder time existence inversely proportional existence solutions proved leray schauder fixed point theorem applied problems partial partial which follow navier stokes equations corresponding boundary conditions existence proved sobolev slobodetski spaces delta beta beta mit omega times where beta delta delta beta delta beta

W. M. Zajączkowski  1

1 Institute of Mathematics Polish Academy of Sciences Śniadeckich 8 00-956 Warszawa, Poland and Institute of Mathematics and Cryptology Military University of Technology Kaliskiego 2 00-908 Warszawa, Poland
@article{10_4064_sm169_3_3,
     author = {W. M. Zaj\k{a}czkowski},
     title = {Long time existence of regular solutions to
 {Navier{\textendash}Stokes} equations in cylindrical domains under
 boundary slip conditions},
     journal = {Studia Mathematica},
     pages = {243--285},
     year = {2005},
     volume = {169},
     number = {3},
     doi = {10.4064/sm169-3-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm169-3-3/}
}
TY  - JOUR
AU  - W. M. Zajączkowski
TI  - Long time existence of regular solutions to
 Navier–Stokes equations in cylindrical domains under
 boundary slip conditions
JO  - Studia Mathematica
PY  - 2005
SP  - 243
EP  - 285
VL  - 169
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm169-3-3/
DO  - 10.4064/sm169-3-3
LA  - en
ID  - 10_4064_sm169_3_3
ER  - 
%0 Journal Article
%A W. M. Zajączkowski
%T Long time existence of regular solutions to
 Navier–Stokes equations in cylindrical domains under
 boundary slip conditions
%J Studia Mathematica
%D 2005
%P 243-285
%V 169
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm169-3-3/
%R 10.4064/sm169-3-3
%G en
%F 10_4064_sm169_3_3
W. M. Zajączkowski. Long time existence of regular solutions to
 Navier–Stokes equations in cylindrical domains under
 boundary slip conditions. Studia Mathematica, Tome 169 (2005) no. 3, pp. 243-285. doi: 10.4064/sm169-3-3

Cité par Sources :