Extension and lifting of weakly continuous polynomials
Studia Mathematica, Tome 169 (2005) no. 3, pp. 229-241
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that a Banach space $X$ is an ${\scr L}_1$-space
(respectively, an ${\scr L}_\infty$-space) if and only if it
has the lifting (respectively, the extension) property for
polynomials which are weakly continuous on bounded sets. We also
prove that $X$ is an ${\scr L}_1$-space if and only if the
space ${\cal P}_{{\rm wb}}(^m\!X)$ of $m$-homogeneous scalar-valued polynomials on $X$
which are weakly continuous on bounded sets is an ${\scr
L}_\infty$-space.
Keywords:
banach space scr space respectively scr infty space only has lifting respectively extension property polynomials which weakly continuous bounded sets prove scr space only space cal m homogeneous scalar valued polynomials which weakly continuous bounded sets scr infty space
Affiliations des auteurs :
Raffaella Cilia 1 ; Joaquín M. Gutiérrez 2
@article{10_4064_sm169_3_2,
author = {Raffaella Cilia and Joaqu{\'\i}n M. Guti\'errez},
title = {Extension and lifting of weakly continuous polynomials},
journal = {Studia Mathematica},
pages = {229--241},
publisher = {mathdoc},
volume = {169},
number = {3},
year = {2005},
doi = {10.4064/sm169-3-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm169-3-2/}
}
TY - JOUR AU - Raffaella Cilia AU - Joaquín M. Gutiérrez TI - Extension and lifting of weakly continuous polynomials JO - Studia Mathematica PY - 2005 SP - 229 EP - 241 VL - 169 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm169-3-2/ DO - 10.4064/sm169-3-2 LA - en ID - 10_4064_sm169_3_2 ER -
Raffaella Cilia; Joaquín M. Gutiérrez. Extension and lifting of weakly continuous polynomials. Studia Mathematica, Tome 169 (2005) no. 3, pp. 229-241. doi: 10.4064/sm169-3-2
Cité par Sources :