Lie triple ideals and Lie triple epimorphisms on Jordan and Jordan–Banach algebras
Studia Mathematica, Tome 169 (2005) no. 3, pp. 207-228

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A linear subspace $M$ of a Jordan algebra $J$ is said to be a Lie triple ideal of $J$ if $[M,J,J] \subseteq M$, where $[\cdot ,\cdot ,\cdot ]$ denotes the associator. We show that every Lie triple ideal $M$ of a nondegenerate Jordan algebra $J$ is either contained in the center of $J$ or contains the nonzero Lie triple ideal $[U,J,J]$, where $U$ is the ideal of $J$ generated by $[M,M,M]$.Let $H$ be a Jordan algebra, let $J$ be a prime nondegenerate Jordan algebra with extended centroid $C$ and unital central closure $\widehat{J}$, and let ${\mit\Phi}: H\rightarrow J$ be a Lie triple epimorphism (i.e. a linear surjection preserving associators). Assume that $\hbox{deg}(J) \geq 12$. Then we show that there exist a homomorphism ${\mit\Psi} : H \rightarrow \widehat{J}$ and a linear map $\tau : H \rightarrow C$ satisfying $\tau([H,H,H])=0$ such that either ${\mit\Phi} = {\mit\Psi} + \tau$ or ${\mit\Phi} = -{\mit\Psi} + \tau$.Using the preceding results we show that the separating space of a Lie triple epimorphism between Jordan–Banach algebras $H$ and $J$ lies in the center modulo the radical of $J$.
DOI : 10.4064/sm169-3-1
Keywords: linear subspace jordan algebra said lie triple ideal nbsp subseteq where cdot cdot cdot denotes associator every lie triple ideal nondegenerate jordan algebra nbsp either contained center contains nonzero lie triple ideal where ideal generated jordan algebra prime nondegenerate jordan algebra extended centroid unital central closure widehat mit phi rightarrow lie triple epimorphism linear surjection preserving associators assume hbox deg geq there exist homomorphism mit psi rightarrow widehat linear map tau rightarrow satisfying tau either mit phi mit psi tau mit phi mit psi tau using preceding results separating space lie triple epimorphism between jordan banach algebras lies center modulo radical nbsp

M. Brešar 1 ; M. Cabrera 2 ; M. Fošner 3 ; A. R. Villena 2

1 Department of Mathematics University of Maribor PEF, Koroška 160 2000 Maribor, Slovenia
2 Departamento de Análisis Matemático Facultad de Ciencias Universidad de Granada 18071 Granada, Spain
3 Institute of Mathematics, Physics, and Mechanics Jadranska 19 1000 Ljubljana, Slovenia
@article{10_4064_sm169_3_1,
     author = {M. Bre\v{s}ar and M. Cabrera and M. Fo\v{s}ner and A. R. Villena},
     title = {Lie triple ideals and {Lie} triple epimorphisms
 on {Jordan} and {Jordan{\textendash}Banach} algebras},
     journal = {Studia Mathematica},
     pages = {207--228},
     publisher = {mathdoc},
     volume = {169},
     number = {3},
     year = {2005},
     doi = {10.4064/sm169-3-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm169-3-1/}
}
TY  - JOUR
AU  - M. Brešar
AU  - M. Cabrera
AU  - M. Fošner
AU  - A. R. Villena
TI  - Lie triple ideals and Lie triple epimorphisms
 on Jordan and Jordan–Banach algebras
JO  - Studia Mathematica
PY  - 2005
SP  - 207
EP  - 228
VL  - 169
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm169-3-1/
DO  - 10.4064/sm169-3-1
LA  - en
ID  - 10_4064_sm169_3_1
ER  - 
%0 Journal Article
%A M. Brešar
%A M. Cabrera
%A M. Fošner
%A A. R. Villena
%T Lie triple ideals and Lie triple epimorphisms
 on Jordan and Jordan–Banach algebras
%J Studia Mathematica
%D 2005
%P 207-228
%V 169
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm169-3-1/
%R 10.4064/sm169-3-1
%G en
%F 10_4064_sm169_3_1
M. Brešar; M. Cabrera; M. Fošner; A. R. Villena. Lie triple ideals and Lie triple epimorphisms
 on Jordan and Jordan–Banach algebras. Studia Mathematica, Tome 169 (2005) no. 3, pp. 207-228. doi: 10.4064/sm169-3-1

Cité par Sources :