Lie triple ideals and Lie triple epimorphisms
 on Jordan and Jordan–Banach algebras
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 169 (2005) no. 3, pp. 207-228
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              A linear subspace $M$ of a Jordan algebra $J$ is said to be a
Lie triple ideal of $J$ if $[M,J,J] \subseteq M$, where
$[\cdot ,\cdot ,\cdot ]$ denotes the associator. We show that every
Lie triple ideal $M$ of a nondegenerate Jordan algebra $J$ is
either contained in the center of $J$ or contains the nonzero
Lie triple ideal $[U,J,J]$, where $U$ is the ideal of $J$
generated by $[M,M,M]$.Let $H$ be a Jordan algebra, let $J$ be a prime nondegenerate Jordan
algebra with extended centroid $C$ and unital central closure
$\widehat{J}$, and let ${\mit\Phi}: H\rightarrow J$ be a Lie triple
epimorphism (i.e. a linear surjection preserving associators).
Assume that $\hbox{deg}(J) \geq 12$. Then we show that there exist
a homomorphism ${\mit\Psi} : H \rightarrow \widehat{J}$ and a linear
map $\tau : H \rightarrow C$ satisfying $\tau([H,H,H])=0$ such
that either ${\mit\Phi} = {\mit\Psi} + \tau$ or 
${\mit\Phi} = -{\mit\Psi} + \tau$.Using the preceding results we show that the separating
space of a Lie triple epimorphism between Jordan–Banach algebras
$H$ and $J$ lies in the center modulo the radical of $J$.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
linear subspace jordan algebra said lie triple ideal nbsp subseteq where cdot cdot cdot denotes associator every lie triple ideal nondegenerate jordan algebra nbsp either contained center contains nonzero lie triple ideal where ideal generated jordan algebra prime nondegenerate jordan algebra extended centroid unital central closure widehat mit phi rightarrow lie triple epimorphism linear surjection preserving associators assume hbox deg geq there exist homomorphism mit psi rightarrow widehat linear map tau rightarrow satisfying tau either mit phi mit psi tau mit phi mit psi tau using preceding results separating space lie triple epimorphism between jordan banach algebras lies center modulo radical nbsp
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              M. Brešar 1 ; M. Cabrera 2 ; M. Fošner 3 ; A. R. Villena 2
@article{10_4064_sm169_3_1,
     author = {M. Bre\v{s}ar and M. Cabrera and M. Fo\v{s}ner and A. R. Villena},
     title = {Lie triple ideals and {Lie} triple epimorphisms
 on {Jordan} and {Jordan{\textendash}Banach} algebras},
     journal = {Studia Mathematica},
     pages = {207--228},
     publisher = {mathdoc},
     volume = {169},
     number = {3},
     year = {2005},
     doi = {10.4064/sm169-3-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm169-3-1/}
}
                      
                      
                    TY - JOUR AU - M. Brešar AU - M. Cabrera AU - M. Fošner AU - A. R. Villena TI - Lie triple ideals and Lie triple epimorphisms on Jordan and Jordan–Banach algebras JO - Studia Mathematica PY - 2005 SP - 207 EP - 228 VL - 169 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm169-3-1/ DO - 10.4064/sm169-3-1 LA - en ID - 10_4064_sm169_3_1 ER -
%0 Journal Article %A M. Brešar %A M. Cabrera %A M. Fošner %A A. R. Villena %T Lie triple ideals and Lie triple epimorphisms on Jordan and Jordan–Banach algebras %J Studia Mathematica %D 2005 %P 207-228 %V 169 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm169-3-1/ %R 10.4064/sm169-3-1 %G en %F 10_4064_sm169_3_1
M. Brešar; M. Cabrera; M. Fošner; A. R. Villena. Lie triple ideals and Lie triple epimorphisms on Jordan and Jordan–Banach algebras. Studia Mathematica, Tome 169 (2005) no. 3, pp. 207-228. doi: 10.4064/sm169-3-1
Cité par Sources :
