Heat kernel estimates for a class of higher order operators on Lie groups
Studia Mathematica, Tome 169 (2005) no. 1, pp. 71-80

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $G$ be a Lie group of polynomial volume growth. Consider a differential operator $H$ of order $2m$ on $G$ which is a sum of even powers of a generating list $A_1, \ldots, A_{d'}$ of right invariant vector fields. When $G$ is solvable, we obtain an algebraic condition on the list $A_1, \ldots, A_{d'}$ which is sufficient to ensure that the semigroup kernel of $H$ satisfies global Gaussian estimates for all times. For $G$ not necessarily solvable, we state an analytic condition on the list which is necessary and sufficient for global Gaussian estimates. Our results extend previously known results for nilpotent groups.
DOI : 10.4064/sm169-1-5
Keywords: lie group polynomial volume growth consider differential operator order which sum even powers generating list ldots right invariant vector fields solvable obtain algebraic condition list ldots which sufficient ensure semigroup kernel satisfies global gaussian estimates times necessarily solvable state analytic condition list which necessary sufficient global gaussian estimates results extend previously known results nilpotent groups

Nick Dungey 1

1 School of Mathematics University of New South Wales Sydney 2052, Australia
@article{10_4064_sm169_1_5,
     author = {Nick Dungey},
     title = {Heat kernel estimates for a class of
 higher order operators on {Lie} groups},
     journal = {Studia Mathematica},
     pages = {71--80},
     publisher = {mathdoc},
     volume = {169},
     number = {1},
     year = {2005},
     doi = {10.4064/sm169-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm169-1-5/}
}
TY  - JOUR
AU  - Nick Dungey
TI  - Heat kernel estimates for a class of
 higher order operators on Lie groups
JO  - Studia Mathematica
PY  - 2005
SP  - 71
EP  - 80
VL  - 169
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm169-1-5/
DO  - 10.4064/sm169-1-5
LA  - en
ID  - 10_4064_sm169_1_5
ER  - 
%0 Journal Article
%A Nick Dungey
%T Heat kernel estimates for a class of
 higher order operators on Lie groups
%J Studia Mathematica
%D 2005
%P 71-80
%V 169
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm169-1-5/
%R 10.4064/sm169-1-5
%G en
%F 10_4064_sm169_1_5
Nick Dungey. Heat kernel estimates for a class of
 higher order operators on Lie groups. Studia Mathematica, Tome 169 (2005) no. 1, pp. 71-80. doi: 10.4064/sm169-1-5

Cité par Sources :