On the $\psi_2$-behaviour of
linear functionals on isotropic convex bodies
Studia Mathematica, Tome 168 (2005) no. 3, pp. 285-299
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
The slicing problem can be reduced to the study of
isotropic convex bodies $K$ with $\mathop{\rm diam}\nolimits (K)\leq c\sqrt{n}\,L_K$,
where $L_K$ is the isotropic constant. We study the
$\psi_2$-behaviour of linear functionals on this class of bodies.
It is proved that $\|\langle \cdot ,\theta\rangle\|_{\psi_2}\leq
CL_K$ for all $\theta $ in a subset $U$ of $S^{n-1}$ with measure
$\sigma (U)\geq 1-\exp (-c\sqrt{n})$. However, there exist
isotropic convex bodies $K$ with uniformly bounded geometric
distance from the Euclidean ball, such that $\max_{\theta\in
S^{n-1}}\|\langle \cdot ,\theta\rangle\|_{\psi_2} \geq
c\sqrt[4]{n}\,L_K$. In a different direction, we show that good
average $\psi_2$-behaviour of linear functionals on an isotropic
convex body implies very strong dimension-dependent concentration
of volume inside a ball of radius
$r\simeq\sqrt{n}\,L_K$.
Keywords:
slicing problem reduced study isotropic convex bodies mathop diam nolimits leq sqrt where isotropic constant study psi behaviour linear functionals class bodies proved langle cdot theta rangle psi leq theta subset n measure sigma geq exp c sqrt however there exist isotropic convex bodies uniformly bounded geometric distance euclidean ball max theta n langle cdot theta rangle psi geq sqrt different direction average psi behaviour linear functionals isotropic convex body implies strong dimension dependent concentration volume inside ball radius simeq sqrt
Affiliations des auteurs :
G. Paouris  1
@article{10_4064_sm168_3_7,
author = {G. Paouris},
title = {On the $\psi_2$-behaviour of
linear functionals on isotropic convex bodies},
journal = {Studia Mathematica},
pages = {285--299},
year = {2005},
volume = {168},
number = {3},
doi = {10.4064/sm168-3-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm168-3-7/}
}
G. Paouris. On the $\psi_2$-behaviour of linear functionals on isotropic convex bodies. Studia Mathematica, Tome 168 (2005) no. 3, pp. 285-299. doi: 10.4064/sm168-3-7
Cité par Sources :