Differentiability from the representation formula and
the Sobolev–Poincaré inequality
Studia Mathematica, Tome 168 (2005) no. 3, pp. 251-272
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
In the geometries of stratified groups, we provide differentiability theorems for both functions of bounded variation and Sobolev functions. Proofs are based on a systematic application of the Sobolev–Poincaré inequality and the so-called representation formula.
Keywords:
geometries stratified groups provide differentiability theorems functions bounded variation sobolev functions proofs based systematic application sobolev poincar inequality so called representation formula
Affiliations des auteurs :
Valentino Magnani  1
@article{10_4064_sm168_3_5,
author = {Valentino Magnani},
title = {Differentiability from the representation formula and
the {Sobolev{\textendash}Poincar\'e} inequality},
journal = {Studia Mathematica},
pages = {251--272},
year = {2005},
volume = {168},
number = {3},
doi = {10.4064/sm168-3-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm168-3-5/}
}
TY - JOUR AU - Valentino Magnani TI - Differentiability from the representation formula and the Sobolev–Poincaré inequality JO - Studia Mathematica PY - 2005 SP - 251 EP - 272 VL - 168 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm168-3-5/ DO - 10.4064/sm168-3-5 LA - en ID - 10_4064_sm168_3_5 ER -
Valentino Magnani. Differentiability from the representation formula and the Sobolev–Poincaré inequality. Studia Mathematica, Tome 168 (2005) no. 3, pp. 251-272. doi: 10.4064/sm168-3-5
Cité par Sources :