Differentiability from the representation formula and the Sobolev–Poincaré inequality
Studia Mathematica, Tome 168 (2005) no. 3, pp. 251-272

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

In the geometries of stratified groups, we provide differentiability theorems for both functions of bounded variation and Sobolev functions. Proofs are based on a systematic application of the Sobolev–Poincaré inequality and the so-called representation formula.
DOI : 10.4064/sm168-3-5
Keywords: geometries stratified groups provide differentiability theorems functions bounded variation sobolev functions proofs based systematic application sobolev poincar inequality so called representation formula

Valentino Magnani 1

1 Dipartimento di Matematica Universitá di Pisa via Buonarroti n. 2, 56127 Pisa, Italy
@article{10_4064_sm168_3_5,
     author = {Valentino Magnani},
     title = {Differentiability from the representation formula and
 the {Sobolev{\textendash}Poincar\'e} inequality},
     journal = {Studia Mathematica},
     pages = {251--272},
     publisher = {mathdoc},
     volume = {168},
     number = {3},
     year = {2005},
     doi = {10.4064/sm168-3-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm168-3-5/}
}
TY  - JOUR
AU  - Valentino Magnani
TI  - Differentiability from the representation formula and
 the Sobolev–Poincaré inequality
JO  - Studia Mathematica
PY  - 2005
SP  - 251
EP  - 272
VL  - 168
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm168-3-5/
DO  - 10.4064/sm168-3-5
LA  - en
ID  - 10_4064_sm168_3_5
ER  - 
%0 Journal Article
%A Valentino Magnani
%T Differentiability from the representation formula and
 the Sobolev–Poincaré inequality
%J Studia Mathematica
%D 2005
%P 251-272
%V 168
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm168-3-5/
%R 10.4064/sm168-3-5
%G en
%F 10_4064_sm168_3_5
Valentino Magnani. Differentiability from the representation formula and
 the Sobolev–Poincaré inequality. Studia Mathematica, Tome 168 (2005) no. 3, pp. 251-272. doi: 10.4064/sm168-3-5

Cité par Sources :