Differentiability from the representation formula and
the Sobolev–Poincaré inequality
Studia Mathematica, Tome 168 (2005) no. 3, pp. 251-272
In the geometries of stratified groups, we provide differentiability theorems for both functions of bounded variation and Sobolev functions. Proofs are based on a systematic application of the Sobolev–Poincaré inequality and the so-called representation formula.
Keywords:
geometries stratified groups provide differentiability theorems functions bounded variation sobolev functions proofs based systematic application sobolev poincar inequality so called representation formula
Affiliations des auteurs :
Valentino Magnani  1
@article{10_4064_sm168_3_5,
author = {Valentino Magnani},
title = {Differentiability from the representation formula and
the {Sobolev{\textendash}Poincar\'e} inequality},
journal = {Studia Mathematica},
pages = {251--272},
year = {2005},
volume = {168},
number = {3},
doi = {10.4064/sm168-3-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm168-3-5/}
}
TY - JOUR AU - Valentino Magnani TI - Differentiability from the representation formula and the Sobolev–Poincaré inequality JO - Studia Mathematica PY - 2005 SP - 251 EP - 272 VL - 168 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm168-3-5/ DO - 10.4064/sm168-3-5 LA - en ID - 10_4064_sm168_3_5 ER -
Valentino Magnani. Differentiability from the representation formula and the Sobolev–Poincaré inequality. Studia Mathematica, Tome 168 (2005) no. 3, pp. 251-272. doi: 10.4064/sm168-3-5
Cité par Sources :