Généralisation d'un théorème de Haagerup
Studia Mathematica, Tome 168 (2005) no. 3, pp. 217-227 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

Let $G$ be a group of automorphisms of a tree $X$ (with set of vertices $S$) and $H$ a kernel on $S\times S$ invariant under the action of $G$. We want to give an estimate of the $l^r$-operator norm $(1\leq r\leq 2)$ of the operator associated to $H$ in terms of a norm for $H$. This was obtained by U. Haagerup when $G$ is the free group acting simply transitively on a homogeneous tree. Our result is valid when $X$ is a locally finite tree and one of the orbits of $G$ is the set of vertices at even distance from a given vertex; a technical hypothesis, always true when $G$ is discrete, is also assumed. As an application we prove the invertibility of an $l^r$-operator on $S$.
DOI : 10.4064/sm168-3-3
Mots-clés : group automorphisms tree set vertices kernel times invariant under action want estimate r operator norm leq leq operator associated terms norm obtained haagerup group acting simply transitively homogeneous tree result valid locally finite tree orbits set vertices even distance given vertex technical hypothesis always discrete assumed application prove invertibility r operator

Ferdaous Kellil  1   ; Guy Rousseau  2

1 Département de Mathématiques Faculté des Sciences de Monastir 5000 Monastir, Tunisie
2 Institut Elie Cartan Unité mixte de Recherche 7502 Université Henri Poincaré Nancy 1 B.P. 239 54506 Vandœuvre-lès-Nancy, France
@article{10_4064_sm168_3_3,
     author = {Ferdaous Kellil and Guy Rousseau},
     title = {G\'en\'eralisation d'un th\'eor\`eme de {Haagerup}},
     journal = {Studia Mathematica},
     pages = {217--227},
     year = {2005},
     volume = {168},
     number = {3},
     doi = {10.4064/sm168-3-3},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm168-3-3/}
}
TY  - JOUR
AU  - Ferdaous Kellil
AU  - Guy Rousseau
TI  - Généralisation d'un théorème de Haagerup
JO  - Studia Mathematica
PY  - 2005
SP  - 217
EP  - 227
VL  - 168
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm168-3-3/
DO  - 10.4064/sm168-3-3
LA  - fr
ID  - 10_4064_sm168_3_3
ER  - 
%0 Journal Article
%A Ferdaous Kellil
%A Guy Rousseau
%T Généralisation d'un théorème de Haagerup
%J Studia Mathematica
%D 2005
%P 217-227
%V 168
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm168-3-3/
%R 10.4064/sm168-3-3
%G fr
%F 10_4064_sm168_3_3
Ferdaous Kellil; Guy Rousseau. Généralisation d'un théorème de Haagerup. Studia Mathematica, Tome 168 (2005) no. 3, pp. 217-227. doi: 10.4064/sm168-3-3

Cité par Sources :