On the number of non-isomorphic subspaces
of a Banach space
Studia Mathematica, Tome 168 (2005) no. 3, pp. 203-216
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study the number of non-isomorphic subspaces of a given Banach space. Our main result is the following. Let $\frak X$ be a Banach space with an unconditional basis $(e_i)_{i \in {\mathbb N}}$; then either there exists a perfect set $ P$ of infinite subsets of ${\mathbb N}$ such that for any two distinct $A,B \in P$, $[e_i]_{i \in A} \ncong [e_i]_{i \in B}$, or for a residual set of infinite subsets $A$ of ${\mathbb N}$, $[e_i]_{i \in A}$ is isomorphic to $\frak X$, and in that case, $\frak X$ is isomorphic to its square, to its hyperplanes, uniformly isomorphic to ${\frak X} \oplus [e_i]_{i \in D}$ for any $D\subset {\mathbb N}$, and isomorphic to a denumerable Schauder decomposition into uniformly isomorphic copies of itself.
Keywords:
study number non isomorphic subspaces given banach space main result following frak banach space unconditional basis mathbb either there exists perfect set infinite subsets mathbb distinct ncong residual set infinite subsets mathbb isomorphic frak frak isomorphic its square its hyperplanes uniformly isomorphic frak oplus subset mathbb isomorphic denumerable schauder decomposition uniformly isomorphic copies itself
Affiliations des auteurs :
Valentin Ferenczi 1 ; Christian Rosendal 2
@article{10_4064_sm168_3_2,
author = {Valentin Ferenczi and Christian Rosendal},
title = {On the number of non-isomorphic subspaces
of a {Banach} space},
journal = {Studia Mathematica},
pages = {203--216},
publisher = {mathdoc},
volume = {168},
number = {3},
year = {2005},
doi = {10.4064/sm168-3-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm168-3-2/}
}
TY - JOUR AU - Valentin Ferenczi AU - Christian Rosendal TI - On the number of non-isomorphic subspaces of a Banach space JO - Studia Mathematica PY - 2005 SP - 203 EP - 216 VL - 168 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm168-3-2/ DO - 10.4064/sm168-3-2 LA - en ID - 10_4064_sm168_3_2 ER -
Valentin Ferenczi; Christian Rosendal. On the number of non-isomorphic subspaces of a Banach space. Studia Mathematica, Tome 168 (2005) no. 3, pp. 203-216. doi: 10.4064/sm168-3-2
Cité par Sources :