On the number of non-isomorphic subspaces of a Banach space
Studia Mathematica, Tome 168 (2005) no. 3, pp. 203-216

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study the number of non-isomorphic subspaces of a given Banach space. Our main result is the following. Let $\frak X$ be a Banach space with an unconditional basis $(e_i)_{i \in {\mathbb N}}$; then either there exists a perfect set $ P$ of infinite subsets of ${\mathbb N}$ such that for any two distinct $A,B \in P$, $[e_i]_{i \in A} \ncong [e_i]_{i \in B}$, or for a residual set of infinite subsets $A$ of ${\mathbb N}$, $[e_i]_{i \in A}$ is isomorphic to $\frak X$, and in that case, $\frak X$ is isomorphic to its square, to its hyperplanes, uniformly isomorphic to ${\frak X} \oplus [e_i]_{i \in D}$ for any $D\subset {\mathbb N}$, and isomorphic to a denumerable Schauder decomposition into uniformly isomorphic copies of itself.
DOI : 10.4064/sm168-3-2
Keywords: study number non isomorphic subspaces given banach space main result following frak banach space unconditional basis mathbb either there exists perfect set infinite subsets mathbb distinct ncong residual set infinite subsets mathbb isomorphic frak frak isomorphic its square its hyperplanes uniformly isomorphic frak oplus subset mathbb isomorphic denumerable schauder decomposition uniformly isomorphic copies itself

Valentin Ferenczi 1 ; Christian Rosendal 2

1 Equipe d'Analyse Université Paris 6 Couloir 46-0, Boîte 186 4, place Jussieu 75252 Paris Cedex 05, France
2 Equipe d'Analyse Université Paris 6 Couloir 46-0, Boîte 186 4, place Jussieu 75252 Paris Cedex 05, France and Mathematics 253-37 California Institute of Technology Pasadena, CA 91125, U.S.A.
@article{10_4064_sm168_3_2,
     author = {Valentin Ferenczi and Christian Rosendal},
     title = {On the number of non-isomorphic subspaces
 of a {Banach} space},
     journal = {Studia Mathematica},
     pages = {203--216},
     publisher = {mathdoc},
     volume = {168},
     number = {3},
     year = {2005},
     doi = {10.4064/sm168-3-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm168-3-2/}
}
TY  - JOUR
AU  - Valentin Ferenczi
AU  - Christian Rosendal
TI  - On the number of non-isomorphic subspaces
 of a Banach space
JO  - Studia Mathematica
PY  - 2005
SP  - 203
EP  - 216
VL  - 168
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm168-3-2/
DO  - 10.4064/sm168-3-2
LA  - en
ID  - 10_4064_sm168_3_2
ER  - 
%0 Journal Article
%A Valentin Ferenczi
%A Christian Rosendal
%T On the number of non-isomorphic subspaces
 of a Banach space
%J Studia Mathematica
%D 2005
%P 203-216
%V 168
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm168-3-2/
%R 10.4064/sm168-3-2
%G en
%F 10_4064_sm168_3_2
Valentin Ferenczi; Christian Rosendal. On the number of non-isomorphic subspaces
 of a Banach space. Studia Mathematica, Tome 168 (2005) no. 3, pp. 203-216. doi: 10.4064/sm168-3-2

Cité par Sources :