Differentiability of the $g$-Drazin inverse
Studia Mathematica, Tome 168 (2005) no. 3, pp. 193-201

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

If $A(z)$ is a function of a real or complex variable with values in the space $B(X)$ of all bounded linear operators on a Banach space $X$ with each $A(z)$ $g$-Drazin invertible, we study conditions under which the $g$-Drazin inverse ${A}^{\sf D}(z)$ is differentiable. From our results we recover a theorem due to Campbell on the differentiability of the Drazin inverse of a matrix-valued function and a result on differentiation of the Moore–Penrose inverse in Hilbert spaces.
DOI : 10.4064/sm168-3-1
Keywords: function real complex variable values space bounded linear operators banach space each g drazin invertible study conditions under which g drazin inverse differentiable results recover theorem due campbell differentiability drazin inverse matrix valued function result differentiation moore penrose inverse hilbert spaces

J. J. Koliha 1 ; V. Rakočević 2

1 Department of Mathematics and Statistics University of Melbourne Melbourne, VIC 3010, Australia
2 Faculty of Science and Mathematics Višegradska 33 18000 Niš, Serbia-Montenegro
@article{10_4064_sm168_3_1,
     author = {J. J. Koliha and V. Rako\v{c}evi\'c},
     title = {Differentiability of the $g${-Drazin} inverse},
     journal = {Studia Mathematica},
     pages = {193--201},
     publisher = {mathdoc},
     volume = {168},
     number = {3},
     year = {2005},
     doi = {10.4064/sm168-3-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm168-3-1/}
}
TY  - JOUR
AU  - J. J. Koliha
AU  - V. Rakočević
TI  - Differentiability of the $g$-Drazin inverse
JO  - Studia Mathematica
PY  - 2005
SP  - 193
EP  - 201
VL  - 168
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm168-3-1/
DO  - 10.4064/sm168-3-1
LA  - en
ID  - 10_4064_sm168_3_1
ER  - 
%0 Journal Article
%A J. J. Koliha
%A V. Rakočević
%T Differentiability of the $g$-Drazin inverse
%J Studia Mathematica
%D 2005
%P 193-201
%V 168
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm168-3-1/
%R 10.4064/sm168-3-1
%G en
%F 10_4064_sm168_3_1
J. J. Koliha; V. Rakočević. Differentiability of the $g$-Drazin inverse. Studia Mathematica, Tome 168 (2005) no. 3, pp. 193-201. doi: 10.4064/sm168-3-1

Cité par Sources :