On the multiplication operators on spaces
of analytic functions
Studia Mathematica, Tome 168 (2005) no. 2, pp. 187-191
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We consider Hilbert spaces of analytic functions on a plane domain ${\mit \Omega }$ and multiplication operators on such spaces induced by functions from $H^{\infty }({\mit \Omega })$. Recently, K. Zhu has given conditions under which the adjoints of multiplication operators on Hilbert spaces of analytic functions belong to the Cowen–Douglas classes. In this paper, we provide some sufficient conditions which give the converse of the main result obtained by K. Zhu. We also characterize the commutant of certain multiplication operators.
Keywords:
consider hilbert spaces analytic functions plane domain mit omega multiplication operators spaces induced functions infty mit omega recently zhu has given conditions under which adjoints multiplication operators hilbert spaces analytic functions belong cowen douglas classes paper provide sufficient conditions which converse main result obtained zhu characterize commutant certain multiplication operators
Affiliations des auteurs :
B. Yousefi 1 ; S. Foroutan 1
@article{10_4064_sm168_2_8,
author = {B. Yousefi and S. Foroutan},
title = {On the multiplication operators on spaces
of analytic functions},
journal = {Studia Mathematica},
pages = {187--191},
publisher = {mathdoc},
volume = {168},
number = {2},
year = {2005},
doi = {10.4064/sm168-2-8},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm168-2-8/}
}
TY - JOUR AU - B. Yousefi AU - S. Foroutan TI - On the multiplication operators on spaces of analytic functions JO - Studia Mathematica PY - 2005 SP - 187 EP - 191 VL - 168 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm168-2-8/ DO - 10.4064/sm168-2-8 LA - en ID - 10_4064_sm168_2_8 ER -
B. Yousefi; S. Foroutan. On the multiplication operators on spaces of analytic functions. Studia Mathematica, Tome 168 (2005) no. 2, pp. 187-191. doi: 10.4064/sm168-2-8
Cité par Sources :