On the distance between $\langle X \rangle$ and $L^{\infty} $ in the space of continuous BMO-martingales
Studia Mathematica, Tome 168 (2005) no. 2, pp. 129-134 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

Let $X=(X_t,{\mathcal F}_t)$ be a continuous BMO-martingale, that is, $$ \|X\|_{\rm BMO}\equiv \sup_T\|E[|X_\infty-X_T|\,|\,{\mathcal F}_T]\|_\infty\infty, $$ where the supremum is taken over all stopping times $T$. Define the critical exponent $b(X)$ by $$ b(X)=\{b>0:\sup_T\|E[\exp(b^2(\langle X \rangle_\infty-\langle X \rangle_T))\,|\,{\mathcal F}_T]\|_\infty\infty\}, $$ where the supremum is taken over all stopping times $T$. Consider the continuous martingale $q(X)$ defined by $$ q(X)_t=E[\langle X \rangle_\infty\,|\,{\mathcal F}_t]-E[\langle X\rangle_\infty\,|\, {\mathcal F}_0]. $$ We use $q(X)$ to characterize the distance between $\langle X \rangle$ and the class $L^\infty$ of all bounded martingales in the space of continuous BMO-martingales, and we show that the inequalities $$ \frac1{4d_1(q(X),L^\infty)}\leq b(X)\leq \frac4{d_1(q(X),L^\infty)} $$ hold for every continuous BMO-martingale $X$.
DOI : 10.4064/sm168-2-3
Keywords: mathcal continuous bmo martingale bmo equiv sup infty x mathcal infty infty where supremum taken stopping times nbsp define critical exponent nbsp sup exp langle rangle infty langle rangle mathcal infty infty where supremum taken stopping times consider continuous martingale defined langle rangle infty mathcal e langle rangle infty mathcal characterize distance between langle rangle class infty bounded martingales space continuous bmo martingales inequalities frac infty leq leq frac infty every continuous bmo martingale

Litan Yan  1   ; Norihiko Kazamaki  2

1 Department of Mathematics College of Science Donghua University 1882 West Yan'an Rd. Shanghai 200051, P.R. China
2 Department of Mathematics Toyama University 3190 Gofuku,Toyama 930-8555, Japan
@article{10_4064_sm168_2_3,
     author = {Litan Yan and Norihiko Kazamaki},
     title = {On the distance between $\langle X \rangle$ and $L^{\infty} $ in the space
 of continuous {BMO-martingales}},
     journal = {Studia Mathematica},
     pages = {129--134},
     year = {2005},
     volume = {168},
     number = {2},
     doi = {10.4064/sm168-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm168-2-3/}
}
TY  - JOUR
AU  - Litan Yan
AU  - Norihiko Kazamaki
TI  - On the distance between $\langle X \rangle$ and $L^{\infty} $ in the space
 of continuous BMO-martingales
JO  - Studia Mathematica
PY  - 2005
SP  - 129
EP  - 134
VL  - 168
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm168-2-3/
DO  - 10.4064/sm168-2-3
LA  - en
ID  - 10_4064_sm168_2_3
ER  - 
%0 Journal Article
%A Litan Yan
%A Norihiko Kazamaki
%T On the distance between $\langle X \rangle$ and $L^{\infty} $ in the space
 of continuous BMO-martingales
%J Studia Mathematica
%D 2005
%P 129-134
%V 168
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm168-2-3/
%R 10.4064/sm168-2-3
%G en
%F 10_4064_sm168_2_3
Litan Yan; Norihiko Kazamaki. On the distance between $\langle X \rangle$ and $L^{\infty} $ in the space
 of continuous BMO-martingales. Studia Mathematica, Tome 168 (2005) no. 2, pp. 129-134. doi: 10.4064/sm168-2-3

Cité par Sources :