A space $C(K)$ where all nontrivial complemented subspaces have big densities
Studia Mathematica, Tome 168 (2005) no. 2, pp. 109-127

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Using the method of forcing we prove that consistently there is a Banach space (of continuous functions on a totally disconnected compact Hausdorff space) of density $\kappa $ bigger than the continuum where all operators are multiplications by a continuous function plus a weakly compact operator and which has no infinite-dimensional complemented subspaces of density continuum or smaller. In particular no separable infinite-dimensional subspace has a complemented superspace of density continuum or smaller, consistently answering a question of Johnson and Lindenstrauss of 1974.
DOI : 10.4064/sm168-2-2
Keywords: using method forcing prove consistently there banach space continuous functions totally disconnected compact hausdorff space density kappa bigger continuum where operators multiplications continuous function plus weakly compact operator which has infinite dimensional complemented subspaces density continuum smaller particular separable infinite dimensional subspace has complemented superspace density continuum smaller consistently answering question johnson lindenstrauss

Piotr Koszmider 1

1 Departamento de Matemática Universidade de São Paulo Caixa Postal 66281 São Paulo, SP CEP: 05315-970, Brasil
@article{10_4064_sm168_2_2,
     author = {Piotr Koszmider},
     title = {A space $C(K)$ where all nontrivial complemented
  subspaces have big densities},
     journal = {Studia Mathematica},
     pages = {109--127},
     publisher = {mathdoc},
     volume = {168},
     number = {2},
     year = {2005},
     doi = {10.4064/sm168-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm168-2-2/}
}
TY  - JOUR
AU  - Piotr Koszmider
TI  - A space $C(K)$ where all nontrivial complemented
  subspaces have big densities
JO  - Studia Mathematica
PY  - 2005
SP  - 109
EP  - 127
VL  - 168
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm168-2-2/
DO  - 10.4064/sm168-2-2
LA  - en
ID  - 10_4064_sm168_2_2
ER  - 
%0 Journal Article
%A Piotr Koszmider
%T A space $C(K)$ where all nontrivial complemented
  subspaces have big densities
%J Studia Mathematica
%D 2005
%P 109-127
%V 168
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm168-2-2/
%R 10.4064/sm168-2-2
%G en
%F 10_4064_sm168_2_2
Piotr Koszmider. A space $C(K)$ where all nontrivial complemented
  subspaces have big densities. Studia Mathematica, Tome 168 (2005) no. 2, pp. 109-127. doi: 10.4064/sm168-2-2

Cité par Sources :