A space $C(K)$ where all nontrivial complemented
subspaces have big densities
Studia Mathematica, Tome 168 (2005) no. 2, pp. 109-127
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Using the method of forcing we prove that consistently there is a Banach space (of continuous functions on a totally disconnected compact Hausdorff space) of density $\kappa $ bigger than the continuum where all operators are multiplications by a continuous function plus a weakly compact operator and which has no infinite-dimensional complemented subspaces of density continuum or smaller. In particular no separable infinite-dimensional subspace has a complemented superspace of density continuum or smaller, consistently answering a question of Johnson and Lindenstrauss of 1974.
Keywords:
using method forcing prove consistently there banach space continuous functions totally disconnected compact hausdorff space density kappa bigger continuum where operators multiplications continuous function plus weakly compact operator which has infinite dimensional complemented subspaces density continuum smaller particular separable infinite dimensional subspace has complemented superspace density continuum smaller consistently answering question johnson lindenstrauss
Affiliations des auteurs :
Piotr Koszmider 1
@article{10_4064_sm168_2_2,
author = {Piotr Koszmider},
title = {A space $C(K)$ where all nontrivial complemented
subspaces have big densities},
journal = {Studia Mathematica},
pages = {109--127},
publisher = {mathdoc},
volume = {168},
number = {2},
year = {2005},
doi = {10.4064/sm168-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm168-2-2/}
}
TY - JOUR AU - Piotr Koszmider TI - A space $C(K)$ where all nontrivial complemented subspaces have big densities JO - Studia Mathematica PY - 2005 SP - 109 EP - 127 VL - 168 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm168-2-2/ DO - 10.4064/sm168-2-2 LA - en ID - 10_4064_sm168_2_2 ER -
Piotr Koszmider. A space $C(K)$ where all nontrivial complemented subspaces have big densities. Studia Mathematica, Tome 168 (2005) no. 2, pp. 109-127. doi: 10.4064/sm168-2-2
Cité par Sources :