On the vector-valued Fourier transform
and compatibility of operators
Studia Mathematica, Tome 168 (2005) no. 2, pp. 95-108
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let ${\mathbb G}$ be a locally compact abelian group and let $1 p\leq 2$. ${\mathbb G}'$ is the dual group of ${\mathbb G}$, and $p'$ the conjugate exponent of $p$. An operator $T$ between Banach spaces $X$ and $Y$ is said to be compatible with the Fourier transform $F^{{\mathbb G}}$ if $F^{{\mathbb G}}\otimes T: L_p({\mathbb G})\otimes X\rightarrow L_{p'}({\mathbb G}')\otimes Y $ admits a continuous extension $[F^{{\mathbb G}},T]:[L_p({\mathbb G}),X]\rightarrow [L_{p'}({\mathbb G}'),Y]$. Let ${\mathcal FT}_p^{{\mathbb G}}$ denote the collection of such $T$'s. We show that ${\mathcal FT}_p^{{\mathbb R}\times {\mathbb G}} ={\mathcal FT}_p^{{\mathbb Z}\times {\mathbb G}} ={\mathcal FT}_p^{{\mathbb Z}^n \times {\mathbb G}}$ for any ${\mathbb G}$ and positive integer $n$. Moreover, if the factor group of ${\mathbb G}$ by its identity component is a direct sum of a torsion-free group and a finite group with discrete topology then ${\mathcal FT}_p^{{\mathbb G}}={\mathcal FT}_p^{{\mathbb Z}}$.
Keywords:
mathbb locally compact abelian group leq mathbb dual group mathbb conjugate exponent operator between banach spaces said compatible fourier transform mathbb mathbb otimes mathbb otimes rightarrow mathbb otimes admits continuous extension mathbb mathbb rightarrow mathbb mathcal mathbb denote collection mathcal mathbb times mathbb mathcal mathbb times mathbb mathcal mathbb times mathbb mathbb positive integer moreover factor group mathbb its identity component direct sum torsion free group finite group discrete topology mathcal mathbb mathcal mathbb
Affiliations des auteurs :
In Sook Park 1
@article{10_4064_sm168_2_1,
author = {In Sook Park},
title = {On the vector-valued {Fourier} transform
and compatibility of operators},
journal = {Studia Mathematica},
pages = {95--108},
publisher = {mathdoc},
volume = {168},
number = {2},
year = {2005},
doi = {10.4064/sm168-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm168-2-1/}
}
TY - JOUR AU - In Sook Park TI - On the vector-valued Fourier transform and compatibility of operators JO - Studia Mathematica PY - 2005 SP - 95 EP - 108 VL - 168 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm168-2-1/ DO - 10.4064/sm168-2-1 LA - en ID - 10_4064_sm168_2_1 ER -
In Sook Park. On the vector-valued Fourier transform and compatibility of operators. Studia Mathematica, Tome 168 (2005) no. 2, pp. 95-108. doi: 10.4064/sm168-2-1
Cité par Sources :