On the vector-valued Fourier transform and compatibility of operators
Studia Mathematica, Tome 168 (2005) no. 2, pp. 95-108

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let ${\mathbb G}$ be a locally compact abelian group and let $1 p\leq 2$. ${\mathbb G}'$ is the dual group of ${\mathbb G}$, and $p'$ the conjugate exponent of $p$. An operator $T$ between Banach spaces $X$ and $Y$ is said to be compatible with the Fourier transform $F^{{\mathbb G}}$ if $F^{{\mathbb G}}\otimes T: L_p({\mathbb G})\otimes X\rightarrow L_{p'}({\mathbb G}')\otimes Y $ admits a continuous extension $[F^{{\mathbb G}},T]:[L_p({\mathbb G}),X]\rightarrow [L_{p'}({\mathbb G}'),Y]$. Let ${\mathcal FT}_p^{{\mathbb G}}$ denote the collection of such $T$'s. We show that ${\mathcal FT}_p^{{\mathbb R}\times {\mathbb G}} ={\mathcal FT}_p^{{\mathbb Z}\times {\mathbb G}} ={\mathcal FT}_p^{{\mathbb Z}^n \times {\mathbb G}}$ for any ${\mathbb G}$ and positive integer $n$. Moreover, if the factor group of ${\mathbb G}$ by its identity component is a direct sum of a torsion-free group and a finite group with discrete topology then ${\mathcal FT}_p^{{\mathbb G}}={\mathcal FT}_p^{{\mathbb Z}}$.
DOI : 10.4064/sm168-2-1
Keywords: mathbb locally compact abelian group leq mathbb dual group mathbb conjugate exponent operator between banach spaces said compatible fourier transform mathbb mathbb otimes mathbb otimes rightarrow mathbb otimes admits continuous extension mathbb mathbb rightarrow mathbb mathcal mathbb denote collection mathcal mathbb times mathbb mathcal mathbb times mathbb mathcal mathbb times mathbb mathbb positive integer moreover factor group mathbb its identity component direct sum torsion free group finite group discrete topology mathcal mathbb mathcal mathbb

In Sook Park 1

1 Division of Applied Mathematics Korea Advanced Institute of Science and Technology 373-1 Kuseong-dong, Yuseong-gu Taejeon 305-701, Republic of Korea and Next generation radio transmission research team Mobile telecommunication group Electronics and Telecommunications Research Institute 161 Gajeong-dong, Yuseong-gu Daejeon 305-350, Republic of Korea
@article{10_4064_sm168_2_1,
     author = {In Sook Park},
     title = {On the vector-valued {Fourier} transform
 and compatibility of operators},
     journal = {Studia Mathematica},
     pages = {95--108},
     publisher = {mathdoc},
     volume = {168},
     number = {2},
     year = {2005},
     doi = {10.4064/sm168-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm168-2-1/}
}
TY  - JOUR
AU  - In Sook Park
TI  - On the vector-valued Fourier transform
 and compatibility of operators
JO  - Studia Mathematica
PY  - 2005
SP  - 95
EP  - 108
VL  - 168
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm168-2-1/
DO  - 10.4064/sm168-2-1
LA  - en
ID  - 10_4064_sm168_2_1
ER  - 
%0 Journal Article
%A In Sook Park
%T On the vector-valued Fourier transform
 and compatibility of operators
%J Studia Mathematica
%D 2005
%P 95-108
%V 168
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm168-2-1/
%R 10.4064/sm168-2-1
%G en
%F 10_4064_sm168_2_1
In Sook Park. On the vector-valued Fourier transform
 and compatibility of operators. Studia Mathematica, Tome 168 (2005) no. 2, pp. 95-108. doi: 10.4064/sm168-2-1

Cité par Sources :