Embedding theorems for anisotropic Lipschitz spaces
Studia Mathematica, Tome 168 (2005) no. 1, pp. 51-72
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Anisotropic Lipschitz spaces are considered. For these spaces we obtain sharp embeddings in Besov and Lorentz spaces. The methods used are based on estimates of iterative rearrangements. We find a unified approach that arises from the estimation of functions defined as minimum of a given system of functions. The case of $L^1$-norm is also covered.
Keywords:
anisotropic lipschitz spaces considered these spaces obtain sharp embeddings besov lorentz spaces methods based estimates iterative rearrangements unified approach arises estimation functions defined minimum given system functions norm covered
Affiliations des auteurs :
F. J. Pérez  1
@article{10_4064_sm168_1_4,
author = {F. J. P\'erez},
title = {Embedding theorems for anisotropic {Lipschitz} spaces},
journal = {Studia Mathematica},
pages = {51--72},
year = {2005},
volume = {168},
number = {1},
doi = {10.4064/sm168-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm168-1-4/}
}
F. J. Pérez. Embedding theorems for anisotropic Lipschitz spaces. Studia Mathematica, Tome 168 (2005) no. 1, pp. 51-72. doi: 10.4064/sm168-1-4
Cité par Sources :