Embedding theorems for anisotropic Lipschitz spaces
Studia Mathematica, Tome 168 (2005) no. 1, pp. 51-72

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Anisotropic Lipschitz spaces are considered. For these spaces we obtain sharp embeddings in Besov and Lorentz spaces. The methods used are based on estimates of iterative rearrangements. We find a unified approach that arises from the estimation of functions defined as minimum of a given system of functions. The case of $L^1$-norm is also covered.
DOI : 10.4064/sm168-1-4
Keywords: anisotropic lipschitz spaces considered these spaces obtain sharp embeddings besov lorentz spaces methods based estimates iterative rearrangements unified approach arises estimation functions defined minimum given system functions norm covered

F. J. Pérez 1

1 Departamento de Matemáticas y Computación Universidad de La Rioja Edificio J. L. Vives Calle Luis de Ulloa s/n 26004 Logroño, Spain
@article{10_4064_sm168_1_4,
     author = {F. J. P\'erez},
     title = {Embedding theorems for anisotropic {Lipschitz} spaces},
     journal = {Studia Mathematica},
     pages = {51--72},
     publisher = {mathdoc},
     volume = {168},
     number = {1},
     year = {2005},
     doi = {10.4064/sm168-1-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm168-1-4/}
}
TY  - JOUR
AU  - F. J. Pérez
TI  - Embedding theorems for anisotropic Lipschitz spaces
JO  - Studia Mathematica
PY  - 2005
SP  - 51
EP  - 72
VL  - 168
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm168-1-4/
DO  - 10.4064/sm168-1-4
LA  - en
ID  - 10_4064_sm168_1_4
ER  - 
%0 Journal Article
%A F. J. Pérez
%T Embedding theorems for anisotropic Lipschitz spaces
%J Studia Mathematica
%D 2005
%P 51-72
%V 168
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm168-1-4/
%R 10.4064/sm168-1-4
%G en
%F 10_4064_sm168_1_4
F. J. Pérez. Embedding theorems for anisotropic Lipschitz spaces. Studia Mathematica, Tome 168 (2005) no. 1, pp. 51-72. doi: 10.4064/sm168-1-4

Cité par Sources :