Continuous version of the Choquet integral representation theorem
Studia Mathematica, Tome 168 (2005) no. 1, pp. 15-24 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

Let $E$ be a locally convex topological Hausdorff space, $K$ a nonempty compact convex subset of $E$, $\mu$ a regular Borel probability measure on $E$ and $\gamma >0$. We say that the measure $\mu$ $\gamma $-represents a point $x\in K$ if $\sup_{\| f\|\leq1}| f(x)-\int_{K}f\,d\mu | \gamma $ for any $f\in E^{\ast}$. In this paper a continuous version of the Choquet theorem is proved, namely, if $P$ is a continuous multivalued mapping from a metric space $T$ into the space of nonempty, bounded convex subsets of a Banach space $X$, then there exists a weak$^{\ast}$ continuous family $(\mu_{t})$ of regular Borel probability measures on $X$ $\gamma $-representing points in $P(t)$. Two cases are considered: in the first case the values of $P$ are compact, while in the second they are closed. For this purpose it is shown (using geometrical tools) that the mapping $t\mapsto \mathop{\rm ext}\nolimits P(t)$ is lower semicontinuous. Continuous versions of the Krein–Milman theorem are obtained as corollaries.
DOI : 10.4064/sm168-1-2
Keywords: locally convex topological hausdorff space nonempty compact convex subset regular borel probability measure gamma say measure gamma represents point sup leq int gamma ast paper continuous version choquet theorem proved namely continuous multivalued mapping metric space space nonempty bounded convex subsets banach space there exists weak ast continuous family regular borel probability measures gamma representing points cases considered first values compact while second closed purpose shown using geometrical tools mapping mapsto mathop ext nolimits lower semicontinuous continuous versions krein milman theorem obtained corollaries

Piotr Pucha/la 1

1 Institute of Mathematics and Computer Science Technical University of Cz/estochowa Dąbrowskiego 73 42-200 Cz/estochowa, Poland
@article{10_4064_sm168_1_2,
     author = {Piotr Pucha/la},
     title = {Continuous version of
 the {Choquet} integral representation theorem},
     journal = {Studia Mathematica},
     pages = {15--24},
     year = {2005},
     volume = {168},
     number = {1},
     doi = {10.4064/sm168-1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm168-1-2/}
}
TY  - JOUR
AU  - Piotr Pucha/la
TI  - Continuous version of
 the Choquet integral representation theorem
JO  - Studia Mathematica
PY  - 2005
SP  - 15
EP  - 24
VL  - 168
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm168-1-2/
DO  - 10.4064/sm168-1-2
LA  - en
ID  - 10_4064_sm168_1_2
ER  - 
%0 Journal Article
%A Piotr Pucha/la
%T Continuous version of
 the Choquet integral representation theorem
%J Studia Mathematica
%D 2005
%P 15-24
%V 168
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm168-1-2/
%R 10.4064/sm168-1-2
%G en
%F 10_4064_sm168_1_2
Piotr Pucha/la. Continuous version of
 the Choquet integral representation theorem. Studia Mathematica, Tome 168 (2005) no. 1, pp. 15-24. doi: 10.4064/sm168-1-2

Cité par Sources :