Uniform convergence of $N$-dimensional Walsh–Fourier series
Studia Mathematica, Tome 168 (2005) no. 1, pp. 1-14

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We establish conditions on the partial moduli of continuity which guarantee uniform convergence of the $N$-dimensional Walsh–Fourier series of functions $f$ from the class $C_{W}( I^{N}) \cap \bigcap_{i=1}^{N}BV_{i,\{p(n)\}}$, where $p( n)\uparrow \infty$ as $n\to\infty$.
DOI : 10.4064/sm168-1-1
Keywords: establish conditions partial moduli continuity which guarantee uniform convergence n dimensional walsh fourier series functions class cap bigcap where uparrow infty infty

U. Goginava 1

1 Department of Mechanics and Mathematics Tbilisi State University Chavchavadze St. 1, Tbilisi 0128, Georgia
@article{10_4064_sm168_1_1,
     author = {U. Goginava},
     title = {Uniform convergence of
 $N$-dimensional {Walsh{\textendash}Fourier} series},
     journal = {Studia Mathematica},
     pages = {1--14},
     publisher = {mathdoc},
     volume = {168},
     number = {1},
     year = {2005},
     doi = {10.4064/sm168-1-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm168-1-1/}
}
TY  - JOUR
AU  - U. Goginava
TI  - Uniform convergence of
 $N$-dimensional Walsh–Fourier series
JO  - Studia Mathematica
PY  - 2005
SP  - 1
EP  - 14
VL  - 168
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm168-1-1/
DO  - 10.4064/sm168-1-1
LA  - en
ID  - 10_4064_sm168_1_1
ER  - 
%0 Journal Article
%A U. Goginava
%T Uniform convergence of
 $N$-dimensional Walsh–Fourier series
%J Studia Mathematica
%D 2005
%P 1-14
%V 168
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm168-1-1/
%R 10.4064/sm168-1-1
%G en
%F 10_4064_sm168_1_1
U. Goginava. Uniform convergence of
 $N$-dimensional Walsh–Fourier series. Studia Mathematica, Tome 168 (2005) no. 1, pp. 1-14. doi: 10.4064/sm168-1-1

Cité par Sources :