Uniform convergence of
 $N$-dimensional Walsh–Fourier series
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 168 (2005) no. 1, pp. 1-14
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              We establish conditions on the partial moduli of
continuity which guarantee uniform convergence of the $N$-dimensional
Walsh–Fourier series of functions $f$ from the class 
$C_{W}( I^{N}) \cap \bigcap_{i=1}^{N}BV_{i,\{p(n)\}}$, where  $p( n)\uparrow
\infty$ as $n\to\infty$.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
establish conditions partial moduli continuity which guarantee uniform convergence n dimensional walsh fourier series functions class cap bigcap where uparrow infty infty
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              U. Goginava 1
@article{10_4064_sm168_1_1,
     author = {U. Goginava},
     title = {Uniform convergence of
 $N$-dimensional {Walsh{\textendash}Fourier} series},
     journal = {Studia Mathematica},
     pages = {1--14},
     publisher = {mathdoc},
     volume = {168},
     number = {1},
     year = {2005},
     doi = {10.4064/sm168-1-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm168-1-1/}
}
                      
                      
                    U. Goginava. Uniform convergence of $N$-dimensional Walsh–Fourier series. Studia Mathematica, Tome 168 (2005) no. 1, pp. 1-14. doi: 10.4064/sm168-1-1
Cité par Sources :