Uniform convergence of
$N$-dimensional Walsh–Fourier series
Studia Mathematica, Tome 168 (2005) no. 1, pp. 1-14
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We establish conditions on the partial moduli of
continuity which guarantee uniform convergence of the $N$-dimensional
Walsh–Fourier series of functions $f$ from the class
$C_{W}( I^{N}) \cap \bigcap_{i=1}^{N}BV_{i,\{p(n)\}}$, where $p( n)\uparrow
\infty$ as $n\to\infty$.
Keywords:
establish conditions partial moduli continuity which guarantee uniform convergence n dimensional walsh fourier series functions class cap bigcap where uparrow infty infty
Affiliations des auteurs :
U. Goginava  1
@article{10_4064_sm168_1_1,
author = {U. Goginava},
title = {Uniform convergence of
$N$-dimensional {Walsh{\textendash}Fourier} series},
journal = {Studia Mathematica},
pages = {1--14},
year = {2005},
volume = {168},
number = {1},
doi = {10.4064/sm168-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm168-1-1/}
}
U. Goginava. Uniform convergence of $N$-dimensional Walsh–Fourier series. Studia Mathematica, Tome 168 (2005) no. 1, pp. 1-14. doi: 10.4064/sm168-1-1
Cité par Sources :