General Franklin systems as bases in $H^1[0,1]$
Studia Mathematica, Tome 167 (2005) no. 3, pp. 259-292
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
By a general Franklin system corresponding to a dense sequence of
knots ${\cal T}=(t_n, n \geq 0)$ in $[0,1]$
we mean a sequence of orthonormal piecewise linear functions with
knots ${\cal T}$, that is, the $n$th function of the system has knots $t_0,
\ldots, t_n$.
The main result of this paper is
a characterization of sequences ${\cal T}$ for which
the corresponding general Franklin system is a basis or an unconditional
basis in $H^1[0,1]$.
Keywords:
general franklin system corresponding dense sequence knots cal geq mean sequence orthonormal piecewise linear functions knots cal nth function system has knots ldots main result paper characterization sequences cal which corresponding general franklin system basis unconditional basis
Affiliations des auteurs :
Gegham G. Gevorkyan 1 ; Anna Kamont 2
@article{10_4064_sm167_3_7,
author = {Gegham G. Gevorkyan and Anna Kamont},
title = {General {Franklin} systems as bases in $H^1[0,1]$},
journal = {Studia Mathematica},
pages = {259--292},
publisher = {mathdoc},
volume = {167},
number = {3},
year = {2005},
doi = {10.4064/sm167-3-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm167-3-7/}
}
TY - JOUR AU - Gegham G. Gevorkyan AU - Anna Kamont TI - General Franklin systems as bases in $H^1[0,1]$ JO - Studia Mathematica PY - 2005 SP - 259 EP - 292 VL - 167 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm167-3-7/ DO - 10.4064/sm167-3-7 LA - en ID - 10_4064_sm167_3_7 ER -
Gegham G. Gevorkyan; Anna Kamont. General Franklin systems as bases in $H^1[0,1]$. Studia Mathematica, Tome 167 (2005) no. 3, pp. 259-292. doi: 10.4064/sm167-3-7
Cité par Sources :