On differentiability of strongly $\alpha (\cdot )$-paraconvex functions
in non-separable Asplund spaces
Studia Mathematica, Tome 167 (2005) no. 3, pp. 235-244
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
In Rolewicz (2002) it was proved that every strongly $\alpha (\cdot )$-paraconvex function defined on an open convex set in a separable Asplund space is Fréchet differentiable on a residual set. In this paper it is shown that the assumption of separability is not essential.
Keywords:
rolewicz proved every strongly alpha cdot paraconvex function defined convex set separable asplund space chet differentiable residual set paper shown assumption separability essential
Affiliations des auteurs :
S. Rolewicz 1
@article{10_4064_sm167_3_5,
author = {S. Rolewicz},
title = {On differentiability of strongly $\alpha (\cdot )$-paraconvex functions
in non-separable {Asplund} spaces},
journal = {Studia Mathematica},
pages = {235--244},
year = {2005},
volume = {167},
number = {3},
doi = {10.4064/sm167-3-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm167-3-5/}
}
TY - JOUR AU - S. Rolewicz TI - On differentiability of strongly $\alpha (\cdot )$-paraconvex functions in non-separable Asplund spaces JO - Studia Mathematica PY - 2005 SP - 235 EP - 244 VL - 167 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm167-3-5/ DO - 10.4064/sm167-3-5 LA - en ID - 10_4064_sm167_3_5 ER -
S. Rolewicz. On differentiability of strongly $\alpha (\cdot )$-paraconvex functions in non-separable Asplund spaces. Studia Mathematica, Tome 167 (2005) no. 3, pp. 235-244. doi: 10.4064/sm167-3-5
Cité par Sources :