$L^1$ factorizations, moment problems and invariant subspaces
Studia Mathematica, Tome 167 (2005) no. 2, pp. 183-194

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For an absolutely continuous contraction $T$ on a Hilbert space ${{\mathcal H}}$, it is shown that the factorization of various classes of $L^1$ functions $f$ by vectors $x$ and $y$ in ${{\mathcal H}}$, in the sense that $\langle T^nx,y\rangle = \widehat f(-n)$ for $n \ge 0$, implies the existence of invariant subspaces for $T$, or in some cases for rational functions of $T$. One of the main tools employed is the operator-valued Poisson kernel. Finally, a link is established between $L^1$ factorizations and the moment sequences studied in the Atzmon–Godefroy method, from which further results on invariant subspaces are derived.
DOI : 10.4064/sm167-2-5
Keywords: absolutely continuous contraction hilbert space mathcal shown factorization various classes functions vectors mathcal sense langle rangle widehat n implies existence invariant subspaces cases rational functions main tools employed operator valued poisson kernel finally link established between factorizations moment sequences studied atzmon godefroy method which further results invariant subspaces derived

Isabelle Chalendar 1 ; Jonathan R. Partington 2 ; Rachael C. Smith 2

1 Institut Girard Desargues, UFR de Mathématiques Université Claude Bernard Lyon 1 69622 Villeurbanne Cedex, France
2 School of Mathematics University of Leeds Leeds LS2 9JT, U.K.
@article{10_4064_sm167_2_5,
     author = {Isabelle Chalendar and Jonathan R. Partington and Rachael C. Smith},
     title = {$L^1$ factorizations, moment problems
 and invariant subspaces},
     journal = {Studia Mathematica},
     pages = {183--194},
     publisher = {mathdoc},
     volume = {167},
     number = {2},
     year = {2005},
     doi = {10.4064/sm167-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm167-2-5/}
}
TY  - JOUR
AU  - Isabelle Chalendar
AU  - Jonathan R. Partington
AU  - Rachael C. Smith
TI  - $L^1$ factorizations, moment problems
 and invariant subspaces
JO  - Studia Mathematica
PY  - 2005
SP  - 183
EP  - 194
VL  - 167
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm167-2-5/
DO  - 10.4064/sm167-2-5
LA  - en
ID  - 10_4064_sm167_2_5
ER  - 
%0 Journal Article
%A Isabelle Chalendar
%A Jonathan R. Partington
%A Rachael C. Smith
%T $L^1$ factorizations, moment problems
 and invariant subspaces
%J Studia Mathematica
%D 2005
%P 183-194
%V 167
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm167-2-5/
%R 10.4064/sm167-2-5
%G en
%F 10_4064_sm167_2_5
Isabelle Chalendar; Jonathan R. Partington; Rachael C. Smith. $L^1$ factorizations, moment problems
 and invariant subspaces. Studia Mathematica, Tome 167 (2005) no. 2, pp. 183-194. doi: 10.4064/sm167-2-5

Cité par Sources :