Topological and algebraic genericity of divergence and universality
Studia Mathematica, Tome 167 (2005) no. 2, pp. 161-181

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We give general theorems which assert that divergence and universality of certain limiting processes are generic properties. We also define the notion of algebraic genericity, and prove that these properties are algebraically generic as well. We show that universality can occur with Dirichlet series. Finally, we give a criterion for the set of common hypercyclic vectors of a family of operators to be algebraically generic.
DOI : 10.4064/sm167-2-4
Keywords: general theorems which assert divergence universality certain limiting processes generic properties define notion algebraic genericity prove these properties algebraically generic universality occur dirichlet series finally criterion set common hypercyclic vectors family operators algebraically generic

Frédéric Bayart 1

1 Laboratoire Bordelais d'Analyse et de Géométrie UMR 5467 Université Bordeaux 1 351 Cours de la Libération F-33405 Talence Cedex, France
@article{10_4064_sm167_2_4,
     author = {Fr\'ed\'eric Bayart},
     title = {Topological and algebraic genericity
 of divergence and universality},
     journal = {Studia Mathematica},
     pages = {161--181},
     publisher = {mathdoc},
     volume = {167},
     number = {2},
     year = {2005},
     doi = {10.4064/sm167-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm167-2-4/}
}
TY  - JOUR
AU  - Frédéric Bayart
TI  - Topological and algebraic genericity
 of divergence and universality
JO  - Studia Mathematica
PY  - 2005
SP  - 161
EP  - 181
VL  - 167
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm167-2-4/
DO  - 10.4064/sm167-2-4
LA  - en
ID  - 10_4064_sm167_2_4
ER  - 
%0 Journal Article
%A Frédéric Bayart
%T Topological and algebraic genericity
 of divergence and universality
%J Studia Mathematica
%D 2005
%P 161-181
%V 167
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm167-2-4/
%R 10.4064/sm167-2-4
%G en
%F 10_4064_sm167_2_4
Frédéric Bayart. Topological and algebraic genericity
 of divergence and universality. Studia Mathematica, Tome 167 (2005) no. 2, pp. 161-181. doi: 10.4064/sm167-2-4

Cité par Sources :