Pseudodifferential operators on non-quasianalytic classes
 of Beurling type
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 167 (2005) no. 2, pp. 99-131
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              We introduce pseudodifferential operators (of
infinite order) in the framework of non-quasianalytic classes of
Beurling type. We prove that such an operator with
(distributional) kernel in a given Beurling class ${\mathcal
D}'_{(\omega)}$ is pseudo-local and can be locally decomposed,
modulo a smoothing operator, as the composition of a
pseudodifferential operator of finite order and an
ultradifferential operator with constant coefficients in the sense
of Komatsu, both operators with kernel in the same class ${\mathcal
D}'_{(\omega)}$. We also develop the corresponding symbolic
calculus.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
introduce pseudodifferential operators infinite order framework non quasianalytic classes beurling type prove operator distributional kernel given beurling class mathcal omega pseudo local locally decomposed modulo smoothing operator composition pseudodifferential operator finite order ultradifferential operator constant coefficients sense komatsu operators kernel class mathcal omega develop corresponding symbolic calculus
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              C. Fernández 1 ; A. Galbis 1 ; D. Jornet 2
@article{10_4064_sm167_2_1,
     author = {C. Fern\'andez and A. Galbis and D. Jornet},
     title = {Pseudodifferential operators on non-quasianalytic classes
 of {Beurling} type},
     journal = {Studia Mathematica},
     pages = {99--131},
     publisher = {mathdoc},
     volume = {167},
     number = {2},
     year = {2005},
     doi = {10.4064/sm167-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm167-2-1/}
}
                      
                      
                    TY - JOUR AU - C. Fernández AU - A. Galbis AU - D. Jornet TI - Pseudodifferential operators on non-quasianalytic classes of Beurling type JO - Studia Mathematica PY - 2005 SP - 99 EP - 131 VL - 167 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm167-2-1/ DO - 10.4064/sm167-2-1 LA - en ID - 10_4064_sm167_2_1 ER -
%0 Journal Article %A C. Fernández %A A. Galbis %A D. Jornet %T Pseudodifferential operators on non-quasianalytic classes of Beurling type %J Studia Mathematica %D 2005 %P 99-131 %V 167 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm167-2-1/ %R 10.4064/sm167-2-1 %G en %F 10_4064_sm167_2_1
C. Fernández; A. Galbis; D. Jornet. Pseudodifferential operators on non-quasianalytic classes of Beurling type. Studia Mathematica, Tome 167 (2005) no. 2, pp. 99-131. doi: 10.4064/sm167-2-1
Cité par Sources :
